Do you want to publish a course? Click here

Estimation of 3D Human Pose Using Prior Knowledge

72   0   0.0 ( 0 )
 Added by Shu Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Estimating three-dimensional human poses from the positions of two-dimensional joints has shown promising results.However, using two-dimensional joint coordinates as input loses more information than image-based approaches and results in ambiguity.In order to overcome this problem, we combine bone length and camera parameters with two-dimensional joint coordinates for input.This combination is more discriminative than the two-dimensional joint coordinates in that it can improve the accuracy of the models prediction depth and alleviate the ambiguity that comes from projecting three-dimensional coordinates into two-dimensional space. Furthermore, we introduce direction constraints which can better measure the difference between the ground truth and the output of the proposed model. The experimental results on the H36M show that the method performed better than other state-of-the-art three-dimensional human pose estimation approaches.

rate research

Read More

While there has been a success in 2D human pose estimation with convolutional neural networks (CNNs), 3D human pose estimation has not been thoroughly studied. In this paper, we tackle the 3D human pose estimation task with end-to-end learning using CNNs. Relative 3D positions between one joint and the other joints are learned via CNNs. The proposed method improves the performance of CNN with two novel ideas. First, we added 2D pose information to estimate a 3D pose from an image by concatenating 2D pose estimation result with the features from an image. Second, we have found that more accurate 3D poses are obtained by combining information on relative positions with respect to multiple joints, instead of just one root joint. Experimental results show that the proposed method achieves comparable performance to the state-of-the-art methods on Human 3.6m dataset.
In this paper, we propose a novel 3D human pose estimation algorithm from a single image based on neural networks. We adopted the structure of the relational networks in order to capture the relations among different body parts. In our method, each pair of different body parts generates features, and the average of the features from all the pairs are used for 3D pose estimation. In addition, we propose a dropout method that can be used in relational modules, which inherently imposes robustness to the occlusions. The proposed network achieves state-of-the-art performance for 3D pose estimation in Human 3.6M dataset, and it effectively produces plausible results even in the existence of missing joints.
This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the proposed CRF model is defined based on a powerful heat-map regression network, which has been proposed for 2D human pose estimation. This study also presents a regression network for lifting the 2D pose to 3D pose and proposes the prior term based on the consistency between the estimated 3D pose and the 2D pose. To obtain the approximate solution of the proposed CRF model, the N-best strategy is adopted. The proposed inference algorithm can be viewed as sequential processes of bottom-up generation of 2D and 3D pose proposals from the input 2D image based on deep networks and top-down verification of such proposals by checking their consistencies. To evaluate the proposed method, we use two large-scale datasets: Human3.6M and HumanEva. Experimental results show that the proposed method achieves the state-of-the-art 3D human pose estimation performance.
We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D poses from the multi-view 2D poses. First, we introduce a cross-view fusion scheme into CNN to jointly estimate 2D poses for multiple views. Consequently, the 2D pose estimation for each view already benefits from other views. Second, we present a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses. It gradually improves the accuracy of 3D pose with affordable computational cost. We test our method on two public datasets H36M and Total Capture. The Mean Per Joint Position Errors on the two datasets are 26mm and 29mm, which outperforms the state-of-the-arts remarkably (26mm vs 52mm, 29mm vs 35mm). Our code is released at url{https://github.com/microsoft/multiview-human-pose-estimation-pytorch}.
In this paper, we propose a two-stage depth ranking based method (DRPose3D) to tackle the problem of 3D human pose estimation. Instead of accurate 3D positions, the depth ranking can be identified by human intuitively and learned using the deep neural network more easily by solving classification problems. Moreover, depth ranking contains rich 3D information. It prevents the 2D-to-3D pose regression in two-stage methods from being ill-posed. In our method, firstly, we design a Pairwise Ranking Convolutional Neural Network (PRCNN) to extract depth rankings of human joints from images. Secondly, a coarse-to-fine 3D Pose Network(DPNet) is proposed to estimate 3D poses from both depth rankings and 2D human joint locations. Additionally, to improve the generality of our model, we introduce a statistical method to augment depth rankings. Our approach outperforms the state-of-the-art methods in the Human3.6M benchmark for all three testing protocols, indicating that depth ranking is an essential geometric feature which can be learned to improve the 3D pose estimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا