No Arabic abstract
Logical reasoning of text requires understanding critical logical information in the text and performing inference over them. Large-scale pre-trained models for logical reasoning mainly focus on word-level semantics of text while struggling to capture symbolic logic. In this paper, we propose to understand logical symbols and expressions in the text to arrive at the answer. Based on such logical information, we not only put forward a context extension framework but also propose a data augmentation algorithm. The former extends the context to cover implicit logical expressions following logical equivalence laws. The latter augments literally similar but logically different instances to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on ReClor dataset. The results show that our method achieves the state-of-the-art performance, and both logic-driven context extension framework and data augmentation algorithm can help improve the accuracy. And our multi-model ensemble system is the first to surpass human performance on both EASY set and HARD set of ReClor.
Logical reasoning, which is closely related to human cognition, is of vital importance in humans understanding of texts. Recent years have witnessed increasing attentions on machines logical reasoning abilities. However, previous studies commonly apply ad-hoc methods to model pre-defined relation patterns, such as linking named entities, which only considers global knowledge components that are related to commonsense, without local perception of complete facts or events. Such methodology is obviously insufficient to deal with complicated logical structures. Therefore, we argue that the natural logic units would be the group of backbone constituents of the sentence such as the subject-verb-object formed facts, covering both global and local knowledge pieces that are necessary as the basis for logical reasoning. Beyond building the ad-hoc graphs, we propose a more general and convenient fact-driven approach to construct a supergraph on top of our newly defined fact units, and enhance the supergraph with further explicit guidance of local question and option interactions. Experiments on two challenging logical reasoning benchmark datasets, ReClor and LogiQA, show that our proposed model, textsc{Focal Reasoner}, outperforms the baseline models dramatically. It can also be smoothly applied to other downstream tasks such as MuTual, a dialogue reasoning dataset, achieving competitive results.
Recent advances in commonsense reasoning depend on large-scale human-annotated training data to achieve peak performance. However, manual curation of training examples is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit on. We investigate G-DAUG^C, a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting. Our approach generates synthetic examples using pretrained language models, and selects the most informative and diverse set of examples for data augmentation. In experiments with multiple commonsense reasoning benchmarks, G-DAUG^C consistently outperforms existing data augmentation methods based on back-translation, and establishes a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA. Further, in addition to improvements in in-distribution accuracy, G-DAUG^C-augmented training also enhances out-of-distribution generalization, showing greater robustness against adversarial or perturbed examples. Our analysis demonstrates that G-DAUG^C produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance. Our findings encourage future research toward generative data augmentation to enhance both in-distribution learning and out-of-distribution generalization.
In this paper, we investigate data augmentation for text generation, which we call GenAug. Text generation and language modeling are important tasks within natural language processing, and are especially challenging for low-data regimes. We propose and evaluate various augmentation methods, including some that incorporate external knowledge, for finetuning GPT-2 on a subset of Yelp Reviews. We also examine the relationship between the amount of augmentation and the quality of the generated text. We utilize several metrics that evaluate important aspects of the generated text including its diversity and fluency. Our experiments demonstrate that insertion of character-level synthetic noise and keyword replacement with hypernyms are effective augmentation methods, and that the quality of generations improves to a peak at approximately three times the amount of original data.
Data augmentation is an effective way to improve the performance of many neural text generation models. However, current data augmentation methods need to define or choose proper data mapping functions that map the original samples into the augmented samples. In this work, we derive an objective to formulate the problem of data augmentation on text generation tasks without any use of augmented data constructed by specific mapping functions. Our proposed objective can be efficiently optimized and applied to popular loss functions on text generation tasks with a convergence rate guarantee. Experiments on five datasets of two text generation tasks show that our approach can approximate or even surpass popular data augmentation methods.
For many new application domains for data-to-text generation, the main obstacle in training neural models consists of a lack of training data. While usually large numbers of instances are available on the data side, often only very few text samples are available. To address this problem, we here propose a novel few-shot approach for this setting. Our approach automatically augments the data available for training by (i) generating new text samples based on replacing specific values by alternative ones from the same category, (ii) generating new text samples based on GPT-2, and (iii) proposing an automatic method for pairing the new text samples with data samples. As the text augmentation can introduce noise to the training data, we use cycle consistency as an objective, in order to make sure that a given data sample can be correctly reconstructed after having been formulated as text (and that text samples can be reconstructed from data). On both the E2E and WebNLG benchmarks, we show that this weakly supervised training paradigm is able to outperform fully supervised seq2seq models with less than 10% annotations. By utilizing all annotated data, our model can boost the performance of a standard seq2seq model by over 5 BLEU points, establishing a new state-of-the-art on both datasets.