Do you want to publish a course? Click here

Polarization-dependent mode coupling in hyperbolic nanospheres

115   0   0.0 ( 0 )
 Added by Tomasz Antosiewicz
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hyperbolic materials offer a much wider freedom in designing optical properties of nanostructures than ones with isotropic and elliptical dispersion, both metallic or dielectric. Here, we present a detailed theoretical and numerical study of the unique optical properties of spherical nanoantennas composed of such materials. Hyperbolic nanospheres exhibit a rich modal structure that, depending on the polarization and direction of incident light, can exhibit either a full plasmonic-like response with multiple electric resonances, a single, dominant electric dipole or one with mixed magnetic and electric modes with an atypical reversed modal order. We derive resonance conditions for observing these resonances in the dipolar approximation and offer insight into how the modal response evolves with the size, material composition, and illumination. Specifically, the origin of the magnetic dipole mode lies in the hyperbolic dispersion and its existence is determined by two diagonal permittivity components of different sign. Our analysis shows that the origin of this unusual behavior stems from complex coupling between electric and magnetic multipoles, which leads to very strongly scattering or absorbing modes. These observations assert that hyperbolic nanoantennas offer a promising route towards novel light-matter interaction regimes.



rate research

Read More

Multimode optical fibers have seen increasing applications in communication, imaging, high-power lasers and amplifiers. However, inherent imperfections and environmental perturbations cause random polarization and mode mixing, making the output polarization states very different from the input one. This poses a serious issue for employing polarization sensitive techniques to control light-matter interactions or nonlinear optical processes at the distal end of a fiber probe. Here we demonstrate a complete control of polarization states for all output channels by only manipulating the spatial wavefront of a laser beam into the fiber. Arbitrary polarization states for individual output channels are generated by wavefront shaping without constraint on input polarizations. The strong coupling between spatial and polarization degrees of freedom in a multimode fiber enables full polarization control with spatial degrees of freedom alone, transforming a multimode fiber to a highly-efficient reconfigurable matrix of waveplates.
A scanning white light interferometer is developed to measure the distributed polarization coupling (DPC) in high birefringence polarization maintaining fibers (PMFs). Traditionally, this technique requests only one polarization mode to be excited or both polarization modes to be excited with equal intensity in the PMF. Thus, an accurate alignment of the polarization direction with the principal axis in PMF is strictly required, which is not facilely realized in practical measurement. This paper develops a method to measure the spatial distribution of polarization mode coupling with random modes excited using a white light Michelson interferometer. The influence of incident polarization extinction ratio (PER) on polarization coupling detection is evaluated theoretically and experimentally. It is also analyzed and validated in corresponding measurement that the sensitivity of the polarization coupling detection system can be improved more than 100 times with the rotation of the analyzer.
Semiconductor-based layered hyperbolic metamaterials (HMMs) house high-wavevector volume plasmon polariton (VPP) modes in the infrared spectral range. VPP modes have successfully been exploited in the weak-coupling regime through the enhanced Purcell effect. In this paper, we experimentally demonstrate strong coupling between the VPP modes in a semiconductor HMM and the intersubband transition of epitaxially-embedded quantum wells. We observe clear anticrossings in the dispersion curves for the zeroth-, first-, second-, and third-order VPP modes, resulting in upper and lower polariton branches for each mode. This demonstration sets the stage for the creation of novel infrared optoelectronic structures combining HMMs with embedded epitaxial emitter or detector structures.
71 - Y. Tang , Z. Xi , M. Xu 2016
Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes can be achieved, while the lower order modes become leaky and are absorbed in the HMM cladding. This counter intuitive property can lead to novel application in optical communication and photonic integrated circuit. The loss in our HMM-Insulator-HMM~(HIH) waveguide is smaller than that of similar guided mode in a Metal-Insulator-Metal~(MIM) waveguide.
We show that symmetric planar waveguides made of a film composed of a type II hyperbolic metamaterial, where the optical axis (OA) lays parallel to the waveguide interfaces, result in a series of topological transitions in the dispersion diagram as the film electrical thickness increases. The transitions are mediated by elliptical mode branches, which, as soon as they grow from cutoff, coalesce along the OA with anomalously ordered hyperbolic mode branches, resulting in a saddle point. When the electrical thickness of the film increases further, the merged branch starts a transition to hyperbolic normally ordered modes with propagation direction orthogonal to the OA. In this process, the saddle point is transformed into a branch point where a new branch of Ghost waves appears and slow light is observed for a broad range of thicknesses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا