Do you want to publish a course? Click here

Adapting by Pruning: A Case Study on BERT

174   0   0.0 ( 0 )
 Added by Yang Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Adapting pre-trained neural models to downstream tasks has become the standard practice for obtaining high-quality models. In this work, we propose a novel model adaptation paradigm, adapting by pruning, which prunes neural connections in the pre-trained model to optimise the performance on the target task; all remaining connections have their weights intact. We formulate adapting-by-pruning as an optimisation problem with a differentiable loss and propose an efficient algorithm to prune the model. We prove that the algorithm is near-optimal under standard assumptions and apply the algorithm to adapt BERT to some GLUE tasks. Results suggest that our method can prune up to 50% weights in BERT while yielding similar performance compared to the fine-tuned full model. We also compare our method with other state-of-the-art pruning methods and study the topological differences of their obtained sub-networks.



rate research

Read More

Pre-trained Transformer-based models have achieved state-of-the-art performance for various Natural Language Processing (NLP) tasks. However, these models often have billions of parameters, and, thus, are too resource-hungry and computation-intensive to suit low-capability devices or applications with strict latency requirements. One potential remedy for this is model compression, which has attracted a lot of research attention. Here, we summarize the research in compressing Transformers, focusing on the especially popular BERT model. In particular, we survey the state of the art in compression for BERT, we clarify the current best practices for compressing large-scale Transformer models, and we provide insights into the workings of various methods. Our categorization and analysis also shed light on promising future research directions for achieving lightweight, accurate, and generic NLP models.
101 - Yuki Arase , Junichi Tsujii 2019
A semantic equivalence assessment is defined as a task that assesses semantic equivalence in a sentence pair by binary judgment (i.e., paraphrase identification) or grading (i.e., semantic textual similarity measurement). It constitutes a set of tasks crucial for research on natural language understanding. Recently, BERT realized a breakthrough in sentence representation learning (Devlin et al., 2019), which is broadly transferable to various NLP tasks. While BERTs performance improves by increasing its model size, the required computational power is an obstacle preventing practical applications from adopting the technology. Herein, we propose to inject phrasal paraphrase relations into BERT in order to generate suitable representations for semantic equivalence assessment instead of increasing the model size. Experiments on standard natural language understanding tasks confirm that our method effectively improves a smaller BERT model while maintaining the model size. The generated model exhibits superior performance compared to a larger BERT model on semantic equivalence assessment tasks. Furthermore, it achieves larger performance gains on tasks with limited training datasets for fine-tuning, which is a property desirable for transfer learning.
Does adding a theorem to a paper affect its chance of acceptance? Does labeling a post with the authors gender affect the post popularity? This paper develops a method to estimate such causal effects from observational text data, adjusting for confounding features of the text such as the subject or writing quality. We assume that the text suffices for causal adjustment but that, in practice, it is prohibitively high-dimensional. To address this challenge, we develop causally sufficient embeddings, low-dimensional document representations that preserve sufficient information for causal identification and allow for efficient estimation of causal effects. Causally sufficient embeddings combine two ideas. The first is supervised dimensionality reduction: causal adjustment requires only the aspects of text that are predictive of both the treatment and outcome. The second is efficient language modeling: representations of text are designed to dispose of linguistically irrelevant information, and this information is also causally irrelevant. Our method adapts language models (specifically, word embeddings and topic models) to learn document embeddings that are able to predict both treatment and outcome. We study causally sufficient embeddings with semi-synthetic datasets and find that they improve causal estimation over related embedding methods. We illustrate the methods by answering the two motivating questions---the effect of a theorem on paper acceptance and the effect of a gender label on post popularity. Code and data available at https://github.com/vveitch/causal-text-embeddings-tf2}{github.com/vveitch/causal-text-embeddings-tf2
In this work, we study the large-scale pretraining of BERT-Large with differentially private SGD (DP-SGD). We show that combined with a careful implementation, scaling up the batch size to millions (i.e., mega-batches) improves the utility of the DP-SGD step for BERT; we also enhance its efficiency by using an increasing batch size schedule. Our implementation builds on the recent work of [SVK20], who demonstrated that the overhead of a DP-SGD step is minimized with effective use of JAX [BFH+18, FJL18] primitives in conjunction with the XLA compiler [XLA17]. Our implementation achieves a masked language model accuracy of 60.5% at a batch size of 2M, for $epsilon = 5.36$. To put this number in perspective, non-private BERT models achieve an accuracy of $sim$70%.
Transformer architectures show significant promise for natural language processing. Given that a single pretrained model can be fine-tuned to perform well on many different tasks, these networks appear to extract generally useful linguistic features. A natural question is how such networks represent this information internally. This paper describes qualitative and quantitative investigations of one particularly effective model, BERT. At a high level, linguistic features seem to be represented in separate semantic and syntactic subspaces. We find evidence of a fine-grained geometric representation of word senses. We also present empirical descriptions of syntactic representations in both attention matrices and individual word embeddings, as well as a mathematical argument to explain the geometry of these representations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا