Exploring Instance Relations for Unsupervised Feature Embedding


Abstract in English

Despite the great progress achieved in unsupervised feature embedding, existing contrastive learning methods typically pursue view-invariant representations through attracting positive sample pairs and repelling negative sample pairs in the embedding space, while neglecting to systematically explore instance relations. In this paper, we explore instance relations including intra-instance multi-view relation and inter-instance interpolation relation for unsupervised feature embedding. Specifically, we embed intra-instance multi-view relation by aligning the distribution of the distance between an instances different augmented samples and negative samples. We explore inter-instance interpolation relation by transferring the ratio of information for image sample interpolation from pixel space to feature embedding space. The proposed approach, referred to as EIR, is simple-yet-effective and can be easily inserted into existing view-invariant contrastive learning based methods. Experiments conducted on public benchmarks for image classification and retrieval report state-of-the-art or comparable performance.

Download