No Arabic abstract
Two-dimensional (2D) platinum diselenide (PtSe$_2$) has received significant attention for 2D transistor applications due to its high mobility. Here, using molecular beam epitaxy, we investigate the growth of 2D PtSe$_2$ on highly oriented pyrolytic graphite (HOPG) and unveil their electronic properties via X-ray photoelectron spectroscopy, Raman spectra, and scanning tunnelling microscopy/spectroscopy as well as density functional theory (DFT) calculations. PtSe$_2$ adopts a layer-by-layer growth mode on HOPG and shows a decreasing band gap with increasing layer number. For the layer numbers from one to four, PtSe$_2$ has band gaps of $2.0 pm 0.1$, $1.1 pm 0.1$, $0.6 pm 0.1$ and $0.20 pm 0.1$ eV, respectively, and becomes semimetal from the fifth layer. DFT calculations reproduce the layer-dependent evolution of both the band gap and band edges, suggest an indirect band-gap structure, and elucidate the underlying physics at the atomic level.
Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectrum range from visible to mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that match well with the absorption edge, indicating they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other twodimensional materials in electronic and opto-electronic applications.
When a crystal becomes thinner and thinner to the atomic level, peculiar phenomena discretely depending on its layer-numbers (n) start to appear. The symmetry and wave functions strongly reflect the layer-numbers and stacking order, which brings us a potential of realizing new properties and functions that are unexpected in either bulk or simple monolayer. Multilayer WTe2 is one such example exhibiting unique ferroelectricity and non-linear transport properties related to the antiphase stacking and Berry-curvature dipole. Here we investigate the electronic band dispersions of multilayer WTe2 (2-5 layers), by performing laser-based micro-focused angle-resolved photoelectron spectroscopy on exfoliated-flakes that are strictly sorted by n and encapsulated by graphene. We clearly observed the insulator-semimetal transition occurring between 2- and 3-layers, as well as the 30-70 meV spin-splitting of valence bands manifesting in even n as a signature of stronger structural asymmetry. Our result fully demonstrates the possibility of the large energy-scale band and spin manipulation through the finite n stacking procedure.
The recent study of oxides led to the discovery of several new fascinating physical phenomena. High-temperature superconductivity, colossal magnetoresistance, dilute magnetic doping, or multiferroicity were discovered and investigated in transition-metal oxides, representing a prototype class of strongly correlated electronic systems. This development was accompanied by an enormous progress regarding thin film fabrication. Within the past two decades, epitaxial thin films with crystalline quality approaching semiconductor standards became available using laser molecular beam epitaxy. This evolution is reviewed, particularly with emphasis on transition-metal oxide thin films, their versatile physical properties, and their impact on the field of spintronics. First, the physics of ferromagnetic half-metallic oxides, such as the doped manganites, the double perovskites and magnetite is presented together with possible applications based on magnetic tunnel junctions. Second, the wide bandgap semiconductor zinc oxide is discussed particularly with regard to the controversy of dilute magnetic doping with transition-metal ions and the possibility of realizing p-type conductivity. Third, the field of oxide multiferroics is presented with the recent developments in single-phase multiferroic thin film perovskites as well as in composite multiferroic hybrids.
Despite its interest for CMOS applications, Atomic Layer Deposition (ALD) of GeO$_{2}$ thin films, by itself or in combination with SiO$_{2}$, has not been widely investigated yet. Here we report the ALD growth of SiO$_{2}$/GeO$_{2}$ multilayers on Silicon substrates using a so far unreported Ge precursor. The characterization of multilayers with various periodicities reveals successful layer-by-layer growth with electron density contrast and absence of chemical intermixing, down to a periodicity of 2 atomic layers.
The generally accepted view that spin polarization is induced by the asymmetry of the global crystal space group has limited the search for spintronics [1] materials to non-centrosymmetric materials. Recently it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries [2], and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here by using spin- and angle-resolved photoemission spectroscopy (spin-ARPES), we report helical spin texture induced by local Rashba effect (R-2) in centrosymmetric monolayer PtSe$_2$ film. First-principles calculations and effective analytical model support the spin-layer locking picture: in contrast to the spin splitting in conventional Rashba effect (R-1), the opposite spin polarizations induced by R-2 are degenerate in energy while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of spin polarization physics, but also may find applications in electrically tunable spintronics.