Do you want to publish a course? Click here

Lovasz-Type Theorems and Game Comonads

132   0   0.0 ( 0 )
 Added by Luca Reggio
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Lovasz (1967) showed that two finite relational structures A and B are isomorphic if, and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms from C to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this fact. We propose a new categorical formulation, which applies to any locally finite category with pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two variants of Lovasz theorem: the result by Dvov{r}ak (2010) that characterises equivalence of graphs in the k-dimensional Weisfeiler-Leman equivalence by homomorphism counts from graphs of tree-width at most k, and the result of Grohe (2020) characterising equivalence with respect to first-order logic with counting and quantifier depth k in terms of homomorphism counts from graphs of tree-depth at most k. The connection of our categorical formulation with these results is obtained by means of the game comonads of Abramsky et al. We also present a novel application to homomorphism counts in modal logic.



rate research

Read More

Game comonads, introduced by Abramsky, Dawar and Wang and developed by Abramsky and Shah, give an interesting categorical semantics to some Spoiler-Duplicator games that are common in finite model theory. In particular they expose connections between one-sided and two-sided games, and parameters such as treewidth and treedepth and corresponding notions of decomposition. In the present paper, we expand the realm of game comonads to logics with generalised quantifiers. In particular, we introduce a comonad graded by two parameter $n leq k$ such that isomorphisms in the resulting Kleisli category are exactly Duplicator winning strategies in Hellas $n$-bijection game with $k$ pebbles. We define a one-sided version of this game which allows us to provide a categorical semantics for a number of logics with generalised quantifiers. We also give a novel notion of tree decomposition that emerges from the construction.
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-Lof type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that CTT can be given semantics in presheaves on the product of the cube category and a small category with an initial object. We then show that the category of presheaves on the product of the cube category and omega provides semantics for GCTT.
It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms as soon as they are not h-propositions. A natural question is then whether univalence restricted to h-propositions is compatible with UIP. We answer this affirmatively by constructing a model where types are elements of a closed universe defined as a higher inductive type in homotopy type theory. This universe has a path constructor for simultaneous partial univalent completion, i.e., restricted to h-propositions. More generally, we show that univalence restricted to $(n-1)$-types is consistent with the assumption that all types are $n$-truncated. Moreover we parametrize our construction by a suitably well-behaved container, to abstract from a concrete choice of type formers for the universe.
Doctrines are categorical structures very apt to study logics of different nature within a unified environment: the 2-category Dtn of doctrines. Modal interior operators are characterised as particular adjoints in the 2-category Dtn. We show that they can be constructed from comonads in Dtn as well as from adjunctions in it, and the two constructions compare. Finally we show the amount of information lost in the passage from a comonad, or from an adjunction, to the modal interior operator. The basis for the present work is provided by some seminal work of John Power.
209 - Bas Spitters 2016
Coquands cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions: 1. Johnstones topological topos was created to present the geometric realization of simplicial sets as a geometric morphism between toposes. Johnstone shows that simplicial sets classify strict linear orders with disjoint endpoints and that (classically) the unit interval is such an order. Here we show that it can also be a target for cubical realization by showing that Coquands cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval in the topos of cubical sets, we construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا