No Arabic abstract
Content caching is a widely studied technique aimed to reduce the network load imposed by data transmission during peak time while ensuring users quality of experience. It has been shown that when there is a common link between caches and the server, delivering contents via the coded caching scheme can significantly improve performance over conventional caching. However, finding the optimal content placement is a challenge in the case of heterogeneous users behaviours. In this paper we consider heterogeneous number of demands and non-uniform content popularity distribution in the case of homogeneous and heterogeneous user preferences. We propose a hybrid coded-uncoded caching scheme to trade-off between popularity and diversity. We derive explicit closed-form expressions of the server load for the proposed hybrid scheme and formulate the corresponding optimization problem. Results show that the proposed hybrid caching scheme can reduce the server load significantly and outperforms the baseline pure coded and pure uncoded and previous works in the literature for both homogeneous and heterogeneous user preferences.
In this paper we investigate the performance of caching schemes based on fountain codes in a heterogeneous satellite network. We consider multiple cache-aided hubs which are connected to a geostationary satellite through backhaul links. With the aimof reducing the average number of transmissions over the satellite backhaul link, we propose the use of a caching scheme based on fountain codes. We derive a simple analytical expression of the average backhaul transmission rate and provide a tightupper bound on it. Furthermore, we show how the performance of the fountain code based caching scheme is similar to that of a caching scheme based on maximum distance separable codes.
In this work, we propose a content caching and delivery strategy to maximize throughput capacity in cache-enabled wireless networks. To this end, efficient betweenness (EB), which indicates the ratio of content delivery paths passing through a node, is first defined to capture the impact of content caching and delivery on network traffic load distribution. Aided by EB, throughput capacity is shown to be upper bounded by the minimal ratio of successful delivery probability (SDP) to EB among all nodes. Through effectively matching nodes EB with their SDP, the proposed strategy improves throughput capacity with low computation complexity. Simulation results show that the gap between the proposed strategy and the optimal one (obtained through exhausted search) is kept smaller than 6%.
Fog Radio Access Network (F-RAN) architectures can leverage both cloud processing and edge caching for content delivery to the users. To this end, F-RAN utilizes caches at the edge nodes (ENs) and fronthaul links connecting a cloud processor to ENs. Assuming time-invariant content popularity, existing information-theoretic analyses of content delivery in F-RANs rely on offline caching with separate content placement and delivery phases. In contrast, this work focuses on the scenario in which the set of popular content is time-varying, hence necessitating the online replenishment of the ENs caches along with the delivery of the requested files. The analysis is centered on the characterization of the long-term Normalized Delivery Time (NDT), which captures the temporal dependence of the coding latencies accrued across multiple time slots in the high signal-to-noise ratio regime. Online edge caching and delivery schemes are investigated for both serial and pipelined transmission modes across fronthaul and edge segments. Analytical results demonstrate that, in the presence of a time-varying content popularity, the rate of fronthaul links sets a fundamental limit to the long-term NDT of F- RAN system. Analytical results are further verified by numerical simulation, yielding important design insights.
We study the uplink performance of massive multiple-input multiple-output (MIMO) when users are equipped with multiple antennas. To this end, we consider a generalized channel model that accounts for line-of-sight propagation and spatially correlated multipath fading. Most importantly, we employ the Weichselberger correlation model, which has been shown to alleviate the deficiencies of the popular Kronecker model. The main contribution of this paper is a rigorous closed-form expression for the uplink spectral efficiency using maximum-ratio combining and minimum mean square error channel estimation. Our result is a non-trivial generalization of previous results on massive MIMO with spatially correlated channels, thereby enabling us to have suitable designs for future massive MIMO systems. Numerical simulations corroborate our analysis and provide useful insights on how different propagation conditions affect system performance.
A K-tier heterogeneous mmWave uplink cellular network with clustered user equipments (UEs) is considered in this paper. In particular, UEs are assumed to be clustered around small-cell base stations (BSs) according to a Gaussian distribution, leading to the Thomas cluster process based modeling. Specific and practical line-of-sight (LOS) and non-line-of-sight (NLOS) models are adopted with different parameters for different tiers. The probability density functions (PDFs) and complementary cumulative distribution functions (CCDFs) of different distances from UEs to BSs are characterized. Coupled association strategy and largest long-term averaged biased received power criterion are considered, and general expressions for association probabilities are provided. Following the identification of the association probabilities, the Laplace transforms of the inter-cell interference and the intra-cluster interference are characterized. Using tools from stochastic geometry, general expressions of the SINR coverage probability are provided. As extensions, fractional power control is incorporated into the analysis, tractable closed-form expressions are provided for special cases, and average ergodic spectral efficiency is analyzed. Via numerical and simulation results, analytical characterizations are confirmed and the impact of key system and network parameters on the performance is identified.