No Arabic abstract
Graph data are ubiquitous in the real world. Graph learning (GL) tries to mine and analyze graph data so that valuable information can be discovered. Existing GL methods are designed for centralized scenarios. However, in practical scenarios, graph data are usually distributed in different organizations, i.e., the curse of isolated data islands. To address this problem, we incorporate federated learning into GL and propose a general Federated Graph Learning framework FedGL, which is capable of obtaining a high-quality global graph model while protecting data privacy by discovering the global self-supervision information during the federated training. Concretely, we propose to upload the prediction results and node embeddings to the server for discovering the global pseudo label and global pseudo graph, which are distributed to each client to enrich the training labels and complement the graph structure respectively, thereby improving the quality of each local model. Moreover, the global self-supervision enables the information of each client to flow and share in a privacy-preserving manner, thus alleviating the heterogeneity and utilizing the complementarity of graph data among different clients. Finally, experimental results show that FedGL significantly outperforms baselines on four widely used graph datasets.
With the proliferation of edge smart devices and the Internet of Vehicles (IoV) technologies, intelligent fatigue detection has become one of the most-used methods in our daily driving. To improve the performance of the detection model, a series of techniques have been developed. However, existing work still leaves much to be desired, such as privacy disclosure and communication cost. To address these issues, we propose FedSup, a client-edge-cloud framework for privacy and efficient fatigue detection. Inspired by the federated learning technique, FedSup intelligently utilizes the collaboration between client, edge, and cloud server to realizing dynamic model optimization while protecting edge data privacy. Moreover, to reduce the unnecessary system communication overhead, we further propose a Bayesian convolutional neural network (BCNN) approximation strategy on the clients and an uncertainty weighted aggregation algorithm on the cloud to enhance the central model training efficiency. Extensive experiments demonstrate that the FedSup framework is suitable for IoV scenarios and outperforms other mainstream methods.
Effectively and efficiently deploying graph neural networks (GNNs) at scale remains one of the most challenging aspects of graph representation learning. Many powerful solutions have only ever been validated on comparatively small datasets, often with counter-intuitive outcomes -- a barrier which has been broken by the Open Graph Benchmark Large-Scale Challenge (OGB-LSC). We entered the OGB-LSC with two large-scale GNNs: a deep transductive node classifier powered by bootstrapping, and a very deep (up to 50-layer) inductive graph regressor regularised by denoising objectives. Our models achieved an award-level (top-3) performance on both the MAG240M and PCQM4M benchmarks. In doing so, we demonstrate evidence of scalable self-supervised graph representation learning, and utility of very deep GNNs -- both very important open issues. Our code is publicly available at: https://github.com/deepmind/deepmind-research/tree/master/ogb_lsc.
Recently, Graph Neural Network (GNN) has achieved remarkable success in various real-world problems on graph data. However in most industries, data exists in the form of isolated islands and the data privacy and security is also an important issue. In this paper, we propose FedVGCN, a federated GCN learning paradigm for privacy-preserving node classification task under data vertically partitioned setting, which can be generalized to existing GCN models. Specifically, we split the computation graph data into two parts. For each iteration of the training process, the two parties transfer intermediate results to each other under homomorphic encryption. We conduct experiments on benchmark data and the results demonstrate the effectiveness of FedVGCN in the case of GraphSage.
Federated learning (FL) is a machine learning field in which researchers try to facilitate model learning process among multiparty without violating privacy protection regulations. Considerable effort has been invested in FL optimization and communication related researches. In this work, we introduce FedLab, a lightweight open-source framework for FL simulation. The design of FedLab focuses on FL algorithm effectiveness and communication efficiency. Also, FedLab is scalable in different deployment scenario. We hope FedLab could provide flexible API as well as reliable baseline implementations, and relieve the burden of implementing novel approaches for researchers in FL community.
In federated learning, models trained on local clients are distilled into a global model. Due to the permutation invariance arises in neural networks, it is necessary to match the hidden neurons first when executing federated learning with neural networks. Through the Bayesian nonparametric framework, Probabilistic Federated Neural Matching (PFNM) matches and fuses local neural networks so as to adapt to varying global model size and the heterogeneity of the data. In this paper, we propose a new method which extends the PFNM with a Kullback-Leibler (KL) divergence over neural components product, in order to make inference exploiting posterior information in both local and global levels. We also show theoretically that The additional part can be seamlessly concatenated into the match-and-fuse progress. Through a series of simulations, it indicates that our new method outperforms popular state-of-the-art federated learning methods in both single communication round and additional communication rounds situation.