Do you want to publish a course? Click here

$P_c$ Resonances in Molecular Picture

59   0   0.0 ( 0 )
 Added by Kanokphon Phumphan
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study hidden-charm pentaquarks in the baryon-meson molecule picture within the framework of the constituent quark model, considering all the possible quark configurations for the ground state. The strong decays of the $P_c(4312)$, $P_c(4440)$, and $P_c(4457)$ resonances are investigated. It is found that pentaquark states of all quark configurations in the model can decay through the $N J/psi$ channel, but only five pentaquark states may decay dominantly in open-charm modes. The partial decay widths in the $peta_c$ channel are in the same order as in the $p J/psi$ channel for $J^P=1/2^-$ baryon-meson pentaquark states, but the $peta_c$ channel is forbidden for $J^P=3/2^-$ states. For $P_c(4440)$ and $P_c(4457)$, the $p eta_c$, $Sigma_cbar{D}$ and $Lambda_c^+bar{D}$ channels are open only for $J^P=1/2^-$ and the $Sigma_c^*bar{D}$ channel is open only for $J^P=3/2^-$ while for $P_c(4312)$, due to the mass threshold of $Sigma_cbar{D}$ and $Sigma_c^*bar{D}$ higher than 4312 MeV, the $p eta_c$ and $Lambda_c^+bar{D}$ channels are open for $J^P=1/2^-$ but no open-charm cannel open for $J^P=3/2^-$. We strongly suggest that the spin of the $P_c$ resonances may be determined in experiments by investigating the $p eta_c$ and open-charm channels.



rate research

Read More

$P_c$ resonances are studied in the approach of quark model and group theory. It is found that there are totally 17 possible pentaquark states with the quark contents $q^3Q bar Q$ ($q$ are $u$ and $d$ quarks; $Q$ is $c$ quark) in the compact pentaquark picture, where the hidden heavy pentaquark states may take the color singlet-singlet ($[111]_{{qqq}}otimes [111]_{{c bar c}}$) and color octet-octet ($[21]_{{qqq}}otimes [21]_{{c bar c}}$) configurations. The partial decay widths of hidden heavy pentaquark states are calculated for all possible decay channels. The results show that the $pJ/psi$ is the dominant decay channel for both the spin $3/2$ and $1/2$ pentaquark states, and indicate that the $P_c(4440)$ may not be a compact pentaquark state while $P_c(4312)$ and $P_c(4457)$ could be the spin-$frac{1}{2}$ and spin-$frac{3}{2}$ pentaquark states, respectively.
139 - Hao Xu , Qiang Li , Chao-Hsi Chang 2020
Recently observed spectrum of $P_c$ states exhibits a strong link to $Sigma_c bar{D}^{(*)}$ thresholds. In spite of successful molecular interpretations, we still push forward to wonder whether there exist finer structures. Utilizing the effecitve lagrangians respecting heavy quark symmetry and chiral symmetry, as well as instantaneous Bethe-Salpeter equations, we investigate the $Sigma_c bar{D}^{(*)}$ interactions and three $P_c$ states. We confirm that $P_c(4312)$ and $P_c(4440)$ are good candidates of $Sigma_c bar{D}$ and $Sigma_c bar{D}^{*}$ molecules with spin-$frac12$, respectively. Unlike other molecular calculations, our results indicate $P_c(4457)$ signal might be a mixture of spin-$frac32$ and spin-$frac12$ $Sigma_c bar{D}^{*}$ molecules, where the latter one appears to be an excitation of $P_c(4440)$. Therefore we conclude that, confronting three LHCb $P_c$ signals, there may exist not three, but four molecular states.
150 - Jian-Bo Cheng , Yan-Rui Liu 2019
In a chromomagnetic model, we analyse the properties of the newly observed $P_c(4457)^+$, $P_c(4440)^+$, and $P_c(4312)^+$ states. We estimate the masses of the $(uud)_{8_c}(cbar{c})_{8_c}$ and $(uds)_{8_c}(cbar{c})_{8_c}$ pentaquark states by considering the isospin breaking effects. Their values are determined by calculating mass distances from the $Sigma_c^{++}D^-$ and $Xi_c^{prime+}D^-$ thresholds, respectively. It is found that the isospin breaking effects on the spectrum are small. From the uncertainty consideration and the rearrangement decay properties in a simple model, we find that it is possible to assign the $P_c(4457)^+$, $P_c(4440)^+$, and $P_c(4312)^+$ as $J^P=3/2^-$, $1/2^-$, and $3/2^-$ pentaquark states, respectively. The assignment in the molecule picture can be different, in particular for the $P_c(4312)^+$. The information from open-charm channels, e.g. ${cal B}[P_ctoSigma_c^{++}D^-]/{cal B}[P_cto J/psi p]$, will play an important role in distinguishing the inner structures of the $P_c$ states. Discussions and predictions based on the calculations are also given.
Understanding the nature of the hidden charm pentaquark(like) signals in the LHCb data for $Lambda_b^0to J/psi p K^-$ is a central problem of hadron spectroscopy. We propose a scenario completely different from previous ones such as hadron molecules and compact pentaquarks. We identify relevant double triangle mechanisms with leading or lower-order singularities. The associated anomalous threshold cusps at the $Sigma_c^{(*)}bar{D}^{(*)}$ thresholds are significantly more singular than the ordinary ones. Then we demonstrate that the double triangle amplitudes reproduce the peak structures of $P_c(4312)^+$, $P_c(4380)^+$, and $P_c(4457)^+$ in the LHCb data, through an interference with other common mechanisms. Only the $P_c(4440)^+$ peak is due to a resonance with width and strength significantly smaller than previously estimated. $P_c^+$ signals are expected in other processes and the proposed model (partly) explains the current data such as: the GlueX $J/psi$ photoproduction data with no $P_c^+$ signals; the LHCb $Lambda_b^0to J/psi p pi^-$ data with a possible signal only from $P_c(4440)^+$. The double triangle singularity is now a possible option to interpret resonancelike structures near thresholds in general.
We investigate the exotic $OmegaOmega$ dibaryon states with $J^P=0^+$ and $2^+$ in a molecular picture. We construct the scalar and tensor $Omega$$Omega$ molecular interpolating currents and calculate their masses within the method of QCD sum rules. Our results indicate that the mass of the scalar dibaryon state is $m_{OmegaOmega, , 0^+}=(3.33pm0.22) ,unit$, which is about $15 ,mathrm{MeV}$ below the $2m_Omega$ threshold. This result suggests the existence of a loosely bound molecular state of the $J^P=0^+$ scalar $OmegaOmega$ dibaryon with a small binding energy around 15 MeV. The mass of the tensor dibaryon is predicted to be $m_{OmegaOmega,, 2^+}=(3.24pm0.23), mbox{GeV}$, which may imply a deeper molecular state of the tensor $OmegaOmega$ dibaryon than the scalar channel. These exotic strangeness $S=-6$ and doubly-charged $OmegaOmega$ dibaryon states may be identified in the heavy-ion collision processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا