Do you want to publish a course? Click here

AutoMeKin2021: An open-source program for automated reaction discovery

79   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922-1930). This release features a number of new capabilities: rare-event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond-order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin



rate research

Read More

PCMSolver is an open-source library for continuum electrostatic solvation. It can be combined with any quantum chemistry code and requires a minimal interface with the host program, greatly reducing programming effort. As input, PCMSolver needs only the molecular geometry to generate the cavity and the expectation value of the molecular electrostatic potential on the cavity surface. It then returns the solvent polarization back to the host program. The design is powerful and versatile: minimal loss of performance is expected, and a standard single point self-consistent field implementation requires no more than 2 days of work. We provide a brief theoretical overview, followed by two tutorials: one aimed at quantum chemistry program developers wanting to interface their code with PCMSolver, the other aimed at contributors to the library. We finally illustrate past and ongoing work, showing the librarys features, combined with several quantum chemistry programs.
PYSCF is a Python-based general-purpose electronic structure platform that both supports first-principles simulations of molecules and solids, as well as accelerates the development of new methodology and complex computational workflows. The present paper explains the design and philosophy behind PYSCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PYSCF as a development environment. We then summarize the capabilities of PYSCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PYSCF across the domains of quantum chemistry, materials science, machine learning and quantum information science.
The concept of the limiting step is extended to the asymptotology of multiscale reaction networks. Complete theory for linear networks with well separated reaction rate constants is developed. We present algorithms for explicit approximations of eigenvalues and eigenvectors of kinetic matrix. Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple examples. Application of algorithms to nonlinear systems is discussed.
Bloch wavefunctions in solids form a representation of crystalline symmetries. Recent studies revealed that symmetry representations in band structure can be used to diagnose the topological properties of weakly interacting materials. In this work, we introduce an open-source program qeirreps that computes the representation characters in a band structure based on the output file of Quantum ESPRESSO. Our program also calculates the Z4 index, i.e., the sum of inversion parities at all time-reversal invariant momenta, for materials with inversion symmetry. When combined with the symmetry indicator method, this program can be used to explore new topological materials.
The calculation of potential energy surfaces for quantum dynamics can be a time consuming task -- especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior is evaluated for a model function in 2, 3 and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا