Do you want to publish a course? Click here

Integrated Sensing and Communication with Multi-Domain Cooperation

91   0   0.0 ( 0 )
 Added by Jie Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the continuous increase of the spectrum and antennas, endogenous sensing is now possible in the fifth generation and future wireless communication systems. However, sensing is a highly complex task for a heterogeneous communication network with massive connections. Seeking multi-domain cooperation is necessary. In this article, we present an integrated sensing and communication (ISAC) system that performs active, passive, and interactive sensing in different stages of communication through hardware and software. We also propose different methods about how multi-user and multi-frequency band cooperate to further enhance the ISAC systems performance. Finally, we elaborate on the advantages of multi-domain cooperation from the physical layer to the network layer for the ISAC system.



rate research

Read More

149 - An Liu , Zhe Huang , Min Li 2021
The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed.
83 - Yuwei Li , Wanli Ni , Hui Tian 2020
This paper investigates the problem of resource allocation for joint communication and radar sensing system on rate-splitting multiple access (RSMA) based unmanned aerial vehicle (UAV) system. UAV simultaneously communicates with multiple users and probes signals to targets of interest to exploit cooperative sensing ability and achieve substantial gains in size, cost and power consumption. By virtue of using linearly precoded rate splitting at the transmitter and successive interference cancellation at the receivers, RSMA is introduced as a promising paradigm to manage interference as well as enhance spectrum and energy efficiency. To maximize the energy efficiency of UAV networks, the deployment location and the beamforming matrix are jointly optimized under the constraints of power budget, transmission rate and approximation error. To solve the formulated non-convex problem efficiently, we decompose it into the UAV deployment subproblem and the beamforming optimization subproblem. Then, we invoke the successive convex approximation and difference-of-convex programming as well as Dinkelbach methods to transform the intractable subproblems into convex ones at each iteration. Next, an alternating algorithm is designed to solve the non-linear and non-convex problem in an efficient manner, while the corresponding complexity is analyzed as well. Finally, simulation results reveal that proposed algorithm with RSMA is superior to orthogonal multiple access and power-domain non-orthogonal multiple access in terms of power consumption and energy efficiency.
This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to simultaneously perform downlink multiuser communication and radar target sensing. Under this setup, we maximize the radar sensing performance (in terms of minimizing the beampattern matching errors or maximizing the minimum beampattern gains), subject to the communication users minimum signal-to-interference-plus-noise ratio (SINR) requirements and the BSs transmit power constraints. In particular, we consider two types of communication receivers, namely Type-I and Type-II receivers, which do not have and do have the capability of cancelling the interference from the {emph{a-priori}} known dedicated radar signals, respectively. Under both Type-I and Type-II receivers, the beampattern matching and minimum beampattern gain maximization problems are globally optimally solved via applying the semidefinite relaxation (SDR) technique together with the rigorous proof of the tightness of SDR for both Type-I and Type-II receivers under the two design criteria. It is shown that at the optimality, dedicated radar signals are not required with Type-I receivers under some specific conditions, while dedicated radar signals are always needed to enhance the performance with Type-II receivers. Numerical results show that the minimum beampattern gain maximization leads to significantly higher beampattern gains at the worst-case sensing angles with a much lower computational complexity than the beampattern matching design. It is also shown that by exploiting the capability of canceling the interference caused by the radar signals, the case with Type-II receivers results in better sensing performance than that with Type-I receivers and other conventional designs.
105 - Shuowen Zhang , Rui Zhang 2020
Intelligent reflecting surface (IRS) is a new promising technology that is able to reconfigure the wireless propagation channel via smart and passive signal reflection. In this paper, we investigate the capacity region of a two-user communication network with one access point (AP) aided by $M$ IRS elements for enhancing the user-AP channels, where the IRS incurs negligible delay, thus the user-AP channels via the IRS follow the classic discrete memoryless channel model. In particular, we consider two practical IRS deployment strategies that lead to different effective channels between the users and AP, namely, the distributed deployment where the $M$ elements form two IRSs, each deployed in the vicinity of one user, versus the centralized deployment where all the $M$ elements are deployed in the vicinity of the AP. First, we consider the uplink multiple-access channel (MAC) and derive the capacity/achievable rate regions for both deployment strategies under different multiple access schemes. It is shown that the centralized deployment generally outperforms the distributed deployment under symmetric channel setups in terms of achievable user rates. Next, we extend the results to the downlink broadcast channel (BC) by leveraging the celebrated uplink-downlink (or MAC-BC) duality framework, and show that the superior rate performance of centralized over distributed deployment also holds. Numerical results are presented that validate our analysis, and reveal new and useful insights for optimal IRS deployment in wireless networks.
125 - Guoliang Li , Shuai Wang , Jie Li 2021
Integrated sensing and communication (ISAC) is a promising technology to improve the band-utilization efficiency via spectrum sharing or hardware sharing between radar and communication systems. Since a common radio resource budget is shared by both functionalities, there exists a tradeoff between the sensing and communication performance. However, this tradeoff curve is currently unknown in ISAC systems with human motion recognition tasks based on deep learning. To fill this gap, this paper formulates and solves a multi-objective optimization problem which simultaneously maximizes the recognition accuracy and the communication data rate. The key ingredient of this new formulation is a nonlinear recognition accuracy model with respect to the wireless resources, where the model is derived from power function regression of the system performance of the deep spectrogram network. To avoid cost-expensive data collection procedures, a primitive-based autoregressive hybrid (PBAH) channel model is developed, which facilitates efficient training and testing dataset generation for human motion recognition in a virtual environment. Extensive results demonstrate that the proposed wireless recognition accuracy and PBAH channel models match the actual experimental data very well. Moreover, it is found that the accuracy-rate region consists of a communication saturation zone, a sensing saturation zone, and a communication-sensing adversarial zone, of which the third zone achieves the desirable balanced performance for ISAC systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا