Do you want to publish a course? Click here

Coulomb screening effect on the Hoyle state energy in thermal plasmas

66   0   0.0 ( 0 )
 Added by Wataru Horiuchi
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The first excited $J^pi=0^+$ state of $^{12}$C, the so-called Hoyle state, plays an essential role in a triple-$alpha$ ($^4$He) reaction, which is a main contributor to the synthesis of $^{12}$C in a burning star. We investigate the Coulomb screening effects on the energy shift of the Hoyle state in a thermal plasma environment using precise three-$alpha$ model calculations. The Coulomb screening effect between $alpha$ clusters are taken into account within the Debye-Huckel approximation. To generalize our study, we utilize two standard $alpha$-cluster models, which treat the Pauli principle between the $alpha$ particles differently. We find that the energy shifts do not depend on these models and follow a simple estimation in the zero-size limit of the Hoyle state when the Coulomb screening length is as large as a value typical of such a plasma consisting of electrons and $alpha$ particles.



rate research

Read More

The triple alpha reaction is a key to $^{12}$C production and is expected to occur in weakly-coupled, thermal plasmas as encountered in normal stars. We investigate how Coulomb screening affects the structure of a system of three alpha particles in such a plasma environment by precise three-body calculations within the Debye-Huckel approximation. A three-alpha model that has the Coulomb interaction modified in the Yukawa form is employed. Precise three-body wave functions are obtained by a superposition of correlated Gaussian bases with the aid of the stochastic variational method. The energy shifts of the Hoyle state due to the Coulomb screening are obtained as a function of the Debye screening length. The results, which automatically incorporate the finite size effect of the Hoyle state, are consistent with the conventional result based on the Coulomb correction to the chemical potentials of ions that are regarded as point charges in a weakly-coupled, thermal plasma. We have given a theoretical basis to the conventional point-charge approach to the Coulomb screening problem relevant for nuclear reactions in normal stars by providing the first evaluation of the Coulomb corrections to the $Q$ value of the triple alpha process that produces a finite size Hoyle state.
We use a sequential $R$-matrix model to describe the breakup of the Hoyle state into three $alpha$ particles via the ground state of $^8mathrm{Be}$. It is shown that even in a sequential picture, features resembling a direct breakup branch appear in the phase-space distribution of the $alpha$ particles. We construct a toy model to describe the Coulomb interaction in the three-body final state and its effects on the decay spectrum are investigated. The framework is also used to predict the phase-space distribution of the $alpha$ particles emitted in a direct breakup of the Hoyle state and the possibility of interference between a direct and sequential branch is discussed. Our numerical results are compared to the current upper limit on the direct decay branch determined in recent experiments.
163 - Y. Chiba , M. Kimura 2018
The cluster states in $^{13}{rm C}$ are investigated by antisymmetrized molecular dynamics. By investigating the spectroscopic factors, the cluster configurations of the excited states are discussed. It is found that the $1/2^+_2$ state is dominantly composed of the $^{12}{rm C}(0^+_2)otimes s_{1/2}$ configuration and can be regarded as a Hoyle analogue state. On the other hand, the p-wave states ($3/2^-$ and $1/2^-$) do not have such structure, because of the coupling with other configurations. The isoscalar monopole and dipole transition strengths from the ground to the excited states are also studied. It is shown that the excited $1/2^-$ states have strong isoscalar monopole transition strengths consistent with the observation. On the other hand, the excited $1/2^+$ states unexpectedly have weak isoscalar dipole transitions except for the $1/2^+_1$ state. It is discussed that the suppression of the dipole transition is attributed to the property of the dipole operator.
Production of $alpha$-particle triples in the Hoyle state (HS) in dissociation of ${}^{12}$C nuclei at 3.65 and 0.42 $A$ GeV in nuclear track emulsion is revealed by the invariant mass approach. Contribution of the HS to the dissociation ${}^{12}$C $to$ 3$alpha$ is (11 $pm$ 3) %. Reanalysis of data on coherent dissociation ${}^{16}$O $to$ 4$alpha$ at 3.65 $A$ GeV is revealed the HS contribution of (22 $pm$ 2) %.
The drag and diffusion coefficients of heavy quarks propagating through quark gluon plasma (QGP) have been estimated by shielding both the electric and magnetic type infra-red divergences. The electric type screening in perturbative quantum chromodynamics (pQCD) has been widely studied and used in evaluating the diffusion coefficient of heavy quarks (HQs). To our knowledge the impact of magnetic screening in diffusion coefficients of HQs is not studied before. It is found that the effect of magnetic screening mass on the drag and diffusion coefficients of HQs is quite significant and its contribution should not be ignored for explaining the experimental data of heavy quark observables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا