Scattering of the three-dimensional cubic nonlinear Schrodinger equation with partial harmonic potentials


Abstract in English

In this paper, we consider the following three dimensional defocusing cubic nonlinear Schrodinger equation (NLS) with partial harmonic potential begin{equation*}tag{NLS} ipartial_t u + left(Delta_{mathbb{R}^3 }-x^2 right) u = |u|^2 u, quad u|_{t=0} = u_0. end{equation*} Our main result shows that the solution $u$ scatters for any given initial data $u_0$ with finite mass and energy. The main new ingredient in our approach is to approximate (NLS) in the large-scale case by a relevant dispersive continuous resonant (DCR) system. The proof of global well-posedness and scattering of the new (DCR) system is greatly inspired by the fundamental works of Dodson cite{D3,D1,D2} in his study of scattering for the mass-critical nonlinear Schrodinger equation. The analysis of (DCR) system allows us to utilize the additional regularity of the smooth nonlinear profile so that the celebrated concentration-compactness/rigidity argument of Kenig and Merle applies.

Download