Do you want to publish a course? Click here

Micro Tidal Disruption Events in Active Galactic Nuclei

93   0   0.0 ( 0 )
 Added by Imre Bartos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Active galactic nuclei (AGNs) can act as black hole assembly lines, funneling some of the stellar-mass black holes from the vicinity of the galactic center into the inner plane of the AGN disk where the black holes can merge through dynamical friction and gravitational wave emission. Here, we show that stars near the galactic center are also brought into the AGN disk, where they can be tidally disrupted by the stellar-mass black holes in the disk. Such micro-tidal disruption events (micro-TDEs) could be useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of $sim170$ Gpc$^{-3}$yr$^{-1}$. Their cleanest observational probe may be the detection of tidal disruption in AGNs by heavy supermassive black holes ($M_{bullet}gtrsim10^{8}$ M$_{odot}$) so that cannot tidally disrupt solar-type stars. We discuss two such TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl).



rate research

Read More

One of the main challenges of current tidal disruption events (TDEs) studies is that emission arising from AGN activity may potentially mimic the expected X-ray emission of a TDE. Here we compare the X-ray properties of TDEs and AGN to determine a set of characteristics which would allow us to discriminate between flares arising from these two objects. We find that at peak, TDEs are brighter than AGN found at similar redshifts. However, compared to preflare upperlimits, highly variable AGN can produce flares of a similar order of magnitude as those seen from X-ray TDEs. Nevertheless, TDEs decay significantly more monotonically, and their emission exhibits little variation in spectral hardness as a function of time. We also find that X-ray TDEs are less absorbed, and their emission is much softer than the emission detected from AGN found at similar redshifts. We derive the X-ray luminosity function (LF) for X-ray TDEs using the events from Auchettl et al. (2017). Interestingly, our X-ray LF matches closely the theoretically derived LF by Milosavljevic et al. (2006). which assumes a higher TDE rate currently estimated from observations. Using our results and the results of Stone & Metzger (2016), we estimate a TDE rate of $(0.7-4.7)times10^{-4}$ yr$^{-1}$ per galaxy, higher than current observational estimates. We find that TDEs can contribute significantly to the LF of AGN for $zlesssim0.4$, while there is no evidence that TDEs influence the growth of $10^{6-7}M_{odot}$ BHs. However, BHs $<10^{6}M_{odot}$ can grow from TDEs arising from super-Eddington accretion without contributing significantly to the observed AGN LF at $z=0$.
95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probing otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
77 - C.S. Kochanek 2015
The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle -- stars more massive than the Sun quickly show an increase in their average N/C ratio by factors of 3-10. Because low mass stars evolve slowly and high mass stars are rare, TDEs showing high N/C will almost all be due to 1-2Msun stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen rich quasars and also explains the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.
159 - Giuseppe Lodato 2020
Numerical simulations have historically played a major role in understanding the hydrodynamics of the tidal disruption process. Given the complexity of the geometry of the system, the challenges posed by the problem have indeed stimulated much work on the numerical side. Smoothed Particles Hydrodynamics methods, for example, have seen their very first applications in the context of tidal disruption and still play a major role to this day. Likewise, initial attempts at simulating the evolution of the disrupted star with the so-called affine method have been historically very useful. In this Chapter, we provide an overview of the numerical techniques used in the field and of their limitations, and summarize the work that has been done to simulate numerically the tidal disruption process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا