No Arabic abstract
We report the discovery of a new emission-line object, named SPH4-South = (GAIA EDR3 5616553300192230272), towards the dark cloud LDN 1667. This object came to our attention after inspecting public images that show a faint diffuse nebula a few arcsec southern from SPH4, an emission-line object previously classified as a T Tauri star. We present high-resolution spectra and analyzed JHK photometry of SPH4 and SPH4-South, and new narrow-band and archival broad-band images of these objects. A comparison of the spectra of SPH4 and SPH4-South with high-resolution ones of DG Cir and R Mon, strongly suggests that SPH 4 and SPH4-South are Herbig Ae/Be stars. The classification of SPH4-South is further supported by using a k-NN algorithm to its position in H-K versus J-H color-color diagram. Both stars are detected in the four WISE bands and the WISE colors allow us to classify SPH4 as a Class I and SPH4-South as a Class II source. We also show that the faint nebula is most probably associated with SPH4-South. Using published results on LDN 1667 and the Gaia Early Data Release 3, we conclude that SPH4 is a member of LDN 1667. The case of SPH4-South is not clear because the determination of its distance and proper motion could be affected by the nebulosity around the star, although membership of SPH4-South to LDN 1667 cannot be ruled out.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
We report near-infrared photometric measurements of 35 Herbig Ae/Be candidate stars obtained with direct imaging and aperture photometry. Observations were made through the broadband J, H, and K filters, with each source imaged in at least one of the wavebands. We achieved subarcsecond angular resolution for all observations, providing us with the opportunity to search for close binary candidates and extended structure. The imaging revealed five newly identified binary candidates and one previously resolved T Tauri binary among the target sources with separations of <~2.5. Separate photometry is provided for each of the binary candidate stars. We detect one extended source that has been identified as a protoplanetary nebula. Comparing our magnitudes to past measurements yields significant differences for some sources, possibly indicating photometric variability. H-band finding charts for all of our sources are provided to aid follow-up high-resolution imaging.
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which suggests that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential underlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in circumstellar discs. A second outcome of our study is that the spectropolarimetric signatures for the lower mass Herbig Ae stars differ from those of the higher mass Herbig Be stars. Depolarisations across H_alpha are observed in the Herbig Be group, whereas line polarisations are common amongst the Herbig Ae stars in our sample. These line polarisation effects can be understood in terms of a compact H_alpha source that is polarised by a rotating disc-like configuration. The difference we detect between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung-Russell Diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. However, it is also possible that the compact polarised line component, present in the Herbig Ae stars, is masked in the Herbig Be stars due to their higher levels of H_alpha emission.