We investigate the degradation of quantum entanglement in the Schwarzschild-de Sitter black hole spacetime, by studying the mutual information and the logarithmic negativity for maximally entangled, bipartite initial states for massless minimal scalar fields. This spacetime is endowed with a black hole as well as a cosmological event horizon, giving rise to particle creation at two different temperatures. We consider two independent descriptions of thermodynamics and particle creation in this background. The first involves thermal equilibrium of an observer with the individual Hawking temperature of either of the horizons. We show that as of the asymptotically flat/anti-de Sitter black holes, the entanglement or correlation degrades here with increasing Hawking temperature. The second treats both the horizons combinedly to define a total entropy and an effective equilibrium temperature. We present a field theoretic derivation of this effective temperature and argue that unlike the usual cases, the particle creation here is not ocurring in causally disconnected spacetime wedges but in a single region. Using these states, we then show that in this scenario the entanglement never degrades but increases with increasing black hole temperature and holds true no matter how hot the black hole becomes or how small the cosmological constant is. We argue that this phenomenon can have no analogue in the asymptotically flat/anti-de Sitter black hole spacetimes.