No Arabic abstract
Model-based paradigms for decision-making and control are becoming ubiquitous in robotics. They rely on the ability to efficiently learn a model of the system from data. Structured Mechanical Models (SMMs) are a data-efficient black-box parameterization of mechanical systems, typically fit to data by minimizing the error between predicted and observed accelerations or next states. In this work, we propose a methodology for fitting SMMs to data by minimizing the discrete Euler-Lagrange residual. To study our methodology, we fit models to joint-angle time-series from undamped and damped double-pendulums, studying the quality of learned models fit to data with and without observation noise. Experiments show that our methodology learns models that are better in accuracy to those of the conventional schemes for fitting SMMs. We identify use cases in which our method is a more appropriate methodology. Source code for reproducing the experiments is available at https://github.com/sisl/delsmm.
Model-based methods are the dominant paradigm for controlling robotic systems, though their efficacy depends heavily on the accuracy of the model used. Deep neural networks have been used to learn models of robot dynamics from data, but they suffer from data-inefficiency and the difficulty to incorporate prior knowledge. We introduce Structured Mechanical Models, a flexible model class for mechanical systems that are data-efficient, easily amenable to prior knowledge, and easily usable with model-based control techniques. The goal of this work is to demonstrate the benefits of using Structured Mechanical Models in lieu of black-box neural networks when modeling robot dynamics. We demonstrate that they generalize better from limited data and yield more reliable model-based controllers on a variety of simulated robotic domains.
For applications in e-commerce, warehouses, healthcare, and home service, robots are often required to search through heaps of objects to grasp a specific target object. For mechanical search, we introduce X-Ray, an algorithm based on learned occupancy distributions. We train a neural network using a synthetic dataset of RGBD heap images labeled for a set of standard bounding box targets with varying aspect ratios. X-Ray minimizes support of the learned distribution as part of a mechanical search policy in both simulated and real environments. We benchmark these policies against two baseline policies on 1,000 heaps of 15 objects in simulation where the target object is partially or fully occluded. Results suggest that X-Ray is significantly more efficient, as it succeeds in extracting the target object 82% of the time, 15% more often than the best-performing baseline. Experiments on an ABB YuMi robot with 20 heaps of 25 household objects suggest that the learned policy transfers easily to a physical system, where it outperforms baseline policies by 15% in success rate with 17% fewer actions. Datasets, videos, and experiments are available at https://sites.google.com/berkeley.edu/x-ray.
Constitutive tensors are of common use in mechanics of materials. To determine the relevant symmetry class of an experimental tensor is still a tedious problem. For instance, it requires numerical methods in three-dimensional elasticity. We address here the more affordable case of plane (bi-dimensional) elasticity, which has not been fully solved yet. We recall first Vianellos orthogonal projection method, valid for both the isotropic and the square symmetric (tetragonal) symmetry classes. We then solve in a closed-form the problem of the distance to plane elasticity orthotropy, thanks to the Euler-Lagrange method.
Learning accurate dynamics models is necessary for optimal, compliant control of robotic systems. Current approaches to white-box modeling using analytic parameterizations, or black-box modeling using neural networks, can suffer from high bias or high variance. We address the need for a flexible, gray-box model of mechanical systems that can seamlessly incorporate prior knowledge where it is available, and train expressive function approximators where it is not. We propose to parameterize a mechanical system using neural networks to model its Lagrangian and the generalized forces that act on it. We test our method on a simulated, actuated double pendulum. We show that our method outperforms a naive, black-box model in terms of data-efficiency, as well as performance in model-based reinforcement learning. We also conduct a systematic study of our methods ability to incorporate available prior knowledge about the system to improve data efficiency.
We present Residual Policy Learning (RPL): a simple method for improving nondifferentiable policies using model-free deep reinforcement learning. RPL thrives in complex robotic manipulation tasks where good but imperfect controllers are available. In these tasks, reinforcement learning from scratch remains data-inefficient or intractable, but learning a residual on top of the initial controller can yield substantial improvements. We study RPL in six challenging MuJoCo tasks involving partial observability, sensor noise, model misspecification, and controller miscalibration. For initial controllers, we consider both hand-designed policies and model-predictive controllers with known or learned transition models. By combining learning with control algorithms, RPL can perform long-horizon, sparse-reward tasks for which reinforcement learning alone fails. Moreover, we find that RPL consistently and substantially improves on the initial controllers. We argue that RPL is a promising approach for combining the complementary strengths of deep reinforcement learning and robotic control, pushing the boundaries of what either can achieve independently. Video and code at https://k-r-allen.github.io/residual-policy-learning/.