Do you want to publish a course? Click here

Surveilling Surveillance: Estimating the Prevalence of Surveillance Cameras with Street View Data

72   0   0.0 ( 0 )
 Added by Hao Sheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The use of video surveillance in public spaces -- both by government agencies and by private citizens -- has attracted considerable attention in recent years, particularly in light of rapid advances in face-recognition technology. But it has been difficult to systematically measure the prevalence and placement of cameras, hampering efforts to assess the implications of surveillance on privacy and public safety. Here, we combine computer vision, human verification, and statistical analysis to estimate the spatial distribution of surveillance cameras. Specifically, we build a camera detection model and apply it to 1.6 million street view images sampled from 10 large U.S. cities and 6 other major cities around the world, with positive model detections verified by human experts. After adjusting for the estimated recall of our model, and accounting for the spatial coverage of our sampled images, we are able to estimate the density of surveillance cameras visible from the road. Across the 16 cities we consider, the estimated number of surveillance cameras per linear kilometer ranges from 0.2 (in Los Angeles) to 0.9 (in Seoul). In a detailed analysis of the 10 U.S. cities, we find that cameras are concentrated in commercial, industrial, and mixed zones, and in neighborhoods with higher shares of non-white residents -- a pattern that persists even after adjusting for land use. These results help inform ongoing discussions on the use of surveillance technology, including its potential disparate impacts on communities of color.



rate research

Read More

We propose a traffic danger recognition model that works with arbitrary traffic surveillance cameras to identify and predict car crashes. There are too many cameras to monitor manually. Therefore, we developed a model to predict and identify car crashes from surveillance cameras based on a 3D reconstruction of the road plane and prediction of trajectories. For normal traffic, it supports real-time proactive safety checks of speeds and distances between vehicles to provide insights about possible high-risk areas. We achieve good prediction and recognition of car crashes without using any labeled training data of crashes. Experiments on the BrnoCompSpeed dataset show that our model can accurately monitor the road, with mean errors of 1.80% for distance measurement, 2.77 km/h for speed measurement, 0.24 m for car position prediction, and 2.53 km/h for speed prediction.
The video footage produced by the surveillance cameras is an important evidence to support criminal investigations. Video evidence can be sourced from public (trusted) as well as private (untrusted) surveillance systems. This raises the issue of establishing integrity and auditability for information provided by the untrusted video sources. In this paper, we focus on a airport ecosystem, where multiple entities with varying levels of trust are involved in producing and exchanging video surveillance information. We present a framework to ensure the data integrity of the stored videos, allowing authorities to validate whether video footage has not been tampered. Our proposal uses a lightweight blockchain technology to store the video metadata as blockchain transactions to support the validation of video integrity. The proposed framework also ensures video auditability and non-repudiation. Our evaluations show that the overhead introduced by employing the blockchain to create and query the transactions introduces a very minor latency of a few milliseconds.
324 - Daniel B. Neill 2017
We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for both the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan to 8 years of case-level overdose data from Allegheny County, PA. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes.
Street imagery is a promising big data source providing current and historical images in more than 100 countries. Previous studies used this data to audit built environment features. Here we explore a novel application, using Google Street View (GSV) to predict travel patterns at the city level. We sampled 34 cities in Great Britain. In each city, we accessed GSV images from 1000 random locations from years overlapping with the 2011 Census and the 2011-2013 Active People Survey (APS). We manually annotated images into seven categories of road users. We developed regression models with the counts of images of road users as predictors. Outcomes included Census-reported commute shares of four modes (walking plus public transport, cycling, motorcycle, and car), and APS-reported past-month participation in walking and cycling. In bivariate analyses, we found high correlations between GSV counts of cyclists (GSV-cyclists) and cycle commute mode share (r=0.92) and past-month cycling (r=0.90). Likewise, GSV-pedestrians was moderately correlated with past-month walking for transport (r=0.46), GSV-motorcycles was moderately correlated with commute share of motorcycles (r=0.44), and GSV-buses was highly correlated with commute share of walking plus public transport (r=0.81). GSV-car was not correlated with car commute mode share (r=-0.12). However, in multivariable regression models, all mode shares were predicted well. Cross-validation analyses showed good prediction performance for all the outcomes except past-month walking. Street imagery is a promising new big data source to predict urban mobility patterns. Further testing across multiple settings is warranted both for cross-sectional and longitudinal assessments.
Most existing face image Super-Resolution (SR) methods assume that the Low-Resolution (LR) images were artificially downsampled from High-Resolution (HR) images with bicubic interpolation. This operation changes the natural image characteristics and reduces noise. Hence, SR methods trained on such data most often fail to produce good results when applied to real LR images. To solve this problem, we propose a novel framework for generation of realistic LR/HR training pairs. Our framework estimates realistic blur kernels, noise distributions, and JPEG compression artifacts to generate LR images with similar image characteristics as the ones in the source domain. This allows us to train a SR model using high quality face images as Ground-Truth (GT). For better perceptual quality we use a Generative Adversarial Network (GAN) based SR model where we have exchanged the commonly used VGG-loss [24] with LPIPS-loss [52]. Experimental results on both real and artificially corrupted face images show that our method results in more detailed reconstructions with less noise compared to existing State-of-the-Art (SoTA) methods. In addition, we show that the traditional non-reference Image Quality Assessment (IQA) methods fail to capture this improvement and demonstrate that the more recent NIMA metric [16] correlates better with human perception via Mean Opinion Rank (MOR).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا