Do you want to publish a course? Click here

Massive search of spot- and facula-crossing events in 1598 exoplanetary transit lightcurves

84   0   0.0 ( 0 )
 Added by Roman Baluev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We developed a dedicated statistical test for a massive detection of spot- and facula-crossing anomalies in multiple exoplanetary transit lightcurves, based on the frequentist $p$-value thresholding. This test was used to augment our algorithmic pipeline for transit lightcurves analysis. It was applied to $1598$ amateur and professional transit observations of $26$ targets being monitored in the EXPANSION project. We detected $109$ statistically significant candidate events revealing a roughly $2:1$ asymmetry in favor of spots-crossings over faculae-crossings. Although some candidate anomalies likely appear non-physical and originate from systematic errors, such asymmetry between negative and positive events should indicate a physical difference between the frequency of star spots and faculae. Detected spot-crossing events also reveal positive correlation between their amplitude and width, possibly owed to spot size correlation. However, the frequency of all detectable crossing events appears just about a few per cent, so they cannot explain excessive transit timing noise observed for several targets.



rate research

Read More

We present here the first release of the open-source python package ExoTETHyS, which aims to provide a stand-alone set of tools for modeling spectro-photometric observations of the transiting exoplanets. In particular, we describe: (1) a new calculator of stellar limb-darkening coefficients that outperforms the existing software by one order of magnitude in terms of light-curve model accuracy, i.e., down to <10 parts per million (ppm); (2) an exact transit light-curve generator based on the entire stellar intensity profile rather than limb-darkening coefficients. New tools will be added in later releases to model various effects in exoplanetary transits and eclipsing binaries. ExoTETHyS is a reference package for high-precision exoplanet atmospheric spectroscopy with the upcoming JWST and ARIEL missions.
The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189b, a $M_P approx 2 M_J$ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of $dF = 87.9 pm 4.3$ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of $3435 pm 27$K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a $sim25%$ deeper transit compared to the discovery paper and updating the radius of WASP-189b to $1.619pm0.021 R_J$. We further measured the projected orbital obliquity to be $lambda = 86.4^{+2.9}_{-4.4}$deg, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of $Psi = 85.4pm4.3$deg. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V=6.6 mag star, and using a one-hour binning, we obtain a residual RMS between 10 and 17ppm on the individual light curves, and 5.7ppm when combining the four visits.
Stellar photometric variability and instrumental effects, like cosmic ray hits, data discontinuities, data leaks, instrument aging etc. cause difficulties in the characterization of exoplanets and have an impact on the accuracy and precision of the modelling and detectability of transits, occultations and phase curves. This paper aims to make an attempt to improve the transit, occultation and phase-curve modelling in the presence of strong stellar variability and instrumental noise. We invoke the wavelet-formulation to reach this goal. We explore the capabilities of the software package Transit and Light Curve Modeller (TLCM). It is able to perform a joint radial velocity and light curve fit or light curve fit only. It models the transit, occultation, beaming, ellipsoidal and reflection effects in the light curves (including the gravity darkening effect, too). The red-noise, the stellar variability and instrumental effects are modelled via wavelets. The wavelet-fit is constrained by prescribing that the final white noise level must be equal to the average of the uncertainties of the photometric data points. This helps to avoid the overfit and regularizes the noise model. The approach was tested by injecting synthetic light curves into Keplers short cadence data and then modelling them. The method performs well over a certain signal-to-noise (S/N) ratio. In general a S/N ratio of 10 is needed to get good results but some parameters requires larger S/N, some others can be retrieved at lower S/Ns. We give limits in terms of signal-to-noise ratio for every studied system parameter which is needed to accurate parameter retrieval. The wavelet-approach is able to manage and to remove the impacts of data discontinuities, cosmic ray events, long-term stellar variability and instrument ageing, short term stellar variability and pulsation and flares among others. (...)
The TASTE project is searching for low-mass planets with the Transit Timing Variation (TTV) technique, by gathering high-precision, short-cadence light curves for a selected sample of transiting exoplanets. It has been claimed that the hot Jupiter WASP-3b could be perturbed by a second planet. Presenting eleven new light curves (secured at the IAC80 and UDEM telescopes) and re-analyzing thirty-eight archival light curves in a homogeneous way, we show that new data do not confirm the previously claimed TTV signal. However, we bring evidence that measurements are not consistent with a constant orbital period, though no significant periodicity can be detected. Additional dynamical modeling and follow-up observations are planned to constrain the properties of the perturber or to put upper limits to it. We provide a refined ephemeris for WASP-3b and improved orbital/physical parameters. A contact eclipsing binary, serendipitously discovered among field stars, is reported here for the first time.
The benchmark exoplanet GJ 1214b is one of the best studied transiting planets in the transition zone between rocky Earth-sized planets and gas or ice giants. This class of super-Earth/mini-Neptune planets is unknown in our Solar System, yet is one of the most frequently detected classes of exoplanets. Understanding the transition from rocky to gaseous planets is a crucial step in the exploration of extrasolar planetary systems, in particular with regard to the potential habitability of this class of planets. GJ 1214b has already been studied in detail from various platforms at many different wavelengths. Our airborne observations with SOFIA add information in the Paschen-alpha cont. 1.9 micron infrared wavelength band, which is not accessible by any other current ground- or space-based instrument due to telluric absorption or limited spectral coverage. We used FLIPO and FPI+ on SOFIA to comprehensively analyse the transmission signal of the possible water-world GJ 1214b through photometric observations during transit in three optical and one infrared channels. We present four simultaneous light curves and corresponding transit depths in three optical and one infrared channel, which we compare to previous observations and state-of-the-art synthetic atmospheric models of GJ 1214b. The final precision in transit depth is between 1.5 and 2.5 times the theoretical photon noise limit, not sensitive enough to constrain the theoretical models any better than previous observations. This is the first exoplanet observation with SOFIA that uses its full set of instruments available to exoplanet spectrophotometry. Therefore we use these results to evaluate SOFIAs potential in this field and suggest future improvements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا