Do you want to publish a course? Click here

Non-perturbative determination of collisional broadening and medium induced radiation in QCD plasmas

54   0   0.0 ( 0 )
 Added by Ismail Soudi
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We supply recently obtained results from lattice EQCD with the correct UV limit to construct the collisional broadening kernel $C(b_perp)$ in a QCD plasma. We discuss the limiting behavior of $C(b_perp)$ at small and large impact parameters $b_perp$, and illustrate how the results can be used to compute medium-induced radiation rates.



rate research

Read More

56 - E. Blanco , K. Kutak , W. Placzek 2020
We study evolution equations describing jet propagation through quark--gluon plasma (QGP). In particular we investigate the contribution of momentum transfer during branching and find that such a contribution is sizeable. Furthermore, we study various approximations, such as the Gaussian approximation and the diffusive approximation to the jet-broadening term. We notice that in order to reproduce the BDIM equation (without the momentum transfer in the branching) the diffusive approximation requires a very large value of the jet-quenching parameter $hat q$.
78 - S. Recksiegel , Y. Sumino 2002
We compare the perturbatively calculated QCD potential to that obtained from lattice calculations in the theory without light quark flavours. We examine E_tot(r) = 2 m_pole + V_QCD(r) by re-expressing it in the MSbar mass m = m^MSbar(m^MSbar) and by choosing specific prescriptions for fixing the scale mu (dependent on r and m). By adjusting m so as to maximise the range of convergence, we show that perturbative and lattice calculations agree up to 3*r_0 ~ 7.5 GeV^-1 (r_0 is the Sommer scale) within the uncertainty of order Lambda^3 r^2.
We perform numerical simulations of the QCD Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot plasma which is independent of infrared cutoffs. For weakly-coupled anisotropic plasmas the local rotational symmetry in momentum space is broken. The fields develop unstable modes, forming configurations where B_t>E_t and E_z>B_z. This provides a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth.
222 - Yasumichi Aoki 2010
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summary of related topics are presented. Comparison of strong coupling constant and the strange quark mass from various methods are made.
We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormalons are subtracted from the leading Wilson coefficient. We remove not only the leading renormalon uncertainty of $mathcal{O}(Lambda_{rm QCD})$ but also the first $r$-dependent uncertainty of $mathcal{O}(Lambda_{rm QCD}^3 r^2)$. The theoretical prediction for the potential turns out to be valid at the static color charge distance $Lambda_{rm overline{MS}} r lesssim 0.8$ ($r lesssim 0.4$ fm), which is significantly larger than ordinary perturbation theory. With lattice data down to $Lambda_{rm overline{MS}} r sim 0.09$ ($r sim 0.05$ fm), we perform the matching in a wide region of $r$, which has been difficult in previous determinations of $alpha_s$ from the potential. Our final result is $alpha_s(M_Z^2) = 0.1179^{+0.0015}_{-0.0014}$ with 1.3 % accuracy. The dominant uncertainty comes from higher order corrections to the perturbative prediction and can be straightforwardly reduced by simulating finer lattices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا