Do you want to publish a course? Click here

Unsupervised Graph-based Topic Modeling from Video Transcriptions

148   0   0.0 ( 0 )
 Added by Lukas Stappen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

To unfold the tremendous amount of audiovisual data uploaded daily to social media platforms, effective topic modelling techniques are needed. Existing work tends to apply variants of topic models on text data sets. In this paper, we aim at developing a topic extractor on video transcriptions. The model improves coherence by exploiting neural word embeddings through a graph-based clustering method. Unlike typical topic models, this approach works without knowing the true number of topics. Experimental results on the real-life multimodal data set MuSe-CaR demonstrates that our approach extracts coherent and meaningful topics, outperforming baseline methods. Furthermore, we successfully demonstrate the generalisability of our approach on a pure text review data set.



rate research

Read More

Decision-making usually takes five steps: identifying the problem, collecting data, extracting evidence, identifying pro and con arguments, and making decisions. Focusing on extracting evidence, this paper presents a hybrid model that combines latent Dirichlet allocation and word embeddings to obtain external knowledge from structured and unstructured data. We study the task of sentence-level argument mining, as arguments mostly require some degree of world knowledge to be identified and understood. Given a topic and a sentence, the goal is to classify whether a sentence represents an argument in regard to the topic. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata, building a graph based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. Also, we build a second graph based on topic-specific articles found via Google to tackle the general incompleteness of structured knowledge bases. Combining these graphs, we obtain a graph-based model which, as our evaluation shows, successfully capitalizes on both structured and unstructured data.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
This work focuses on combining nonparametric topic models with Auto-Encoding Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the topics are treated as trainable parameters and the document-specific topic proportions are obtained by a stick-breaking construction. The inference of iTM-VAE is modeled by neural networks such that it can be computed in a simple feed-forward manner. We also describe how to introduce a hyper-prior into iTM-VAE so as to model the uncertainty of the prior parameter. Actually, the hyper-prior technique is quite general and we show that it can be applied to other AEVB based models to alleviate the {it collapse-to-prior} problem elegantly. Moreover, we also propose HiTM-VAE, where the document-specific topic distributions are generated in a hierarchical manner. HiTM-VAE is even more flexible and can generate topic distributions with better variability. Experimental results on 20News and Reuters RCV1-V2 datasets show that the proposed models outperform the state-of-the-art baselines significantly. The advantages of the hyper-prior technique and the hierarchical model construction are also confirmed by experiments.
With the explosive growth of video data, video summarization, which attempts to seek the minimum subset of frames while still conveying the main story, has become one of the hottest topics. Nowadays, substantial achievements have been made by supervised learning techniques, especially after the emergence of deep learning. However, it is extremely expensive and difficult to collect human annotation for large-scale video datasets. To address this problem, we propose a convolutional attentive adversarial network (CAAN), whose key idea is to build a deep summarizer in an unsupervised way. Upon the generative adversarial network, our overall framework consists of a generator and a discriminator. The former predicts importance scores for all frames of a video while the latter tries to distinguish the score-weighted frame features from original frame features. Specifically, the generator employs a fully convolutional sequence network to extract global representation of a video, and an attention-based network to output normalized importance scores. To learn the parameters, our objective function is composed of three loss functions, which can guide the frame-level importance score prediction collaboratively. To validate this proposed method, we have conducted extensive experiments on two public benchmarks SumMe and TVSum. The results show the superiority of our proposed method against other state-of-the-art unsupervised approaches. Our method even outperforms some published supervised approaches.
Production of news content is growing at an astonishing rate. To help manage and monitor the sheer amount of text, there is an increasing need to develop efficient methods that can provide insights into emerging content areas, and stratify unstructured corpora of text into `topics that stem intrinsically from content similarity. Here we present an unsupervised framework that brings together powerful vector embeddings from natural language processing with tools from multiscale graph partitioning that can reveal natural partitions at different resolutions without making a priori assumptions about the number of clusters in the corpus. We show the advantages of graph-based clustering through end-to-end comparisons with other popular clustering and topic modelling methods, and also evaluate different text vector embeddings, from classic Bag-of-Words to Doc2Vec to the recent transformers based model Bert. This comparative work is showcased through an analysis of a corpus of US news coverage during the presidential election year of 2016.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا