No Arabic abstract
GRB200522A is a short duration gamma-ray burst (GRB) at redshift $z$=0.554 characterized by a bright infrared counterpart. A possible, although not unambiguous, interpretation of the observed emission is the onset of a luminous kilonova powered by a rapidly rotating and highly-magnetized neutron star, known as magnetar. A bright radio flare, arising from the interaction of the kilonova ejecta with the surrounding medium, is a prediction of this model. Whereas the available dataset remains open to multiple interpretations (e.g. afterglow, r-process kilonova, magnetar-powered kilonova), long-term radio monitoring of this burst may be key to discriminate between models. We present our late-time upper limit on the radio emission of GRB200522A, carried out with the Karl G. Jansky Very Large Array at 288 days after the burst. For kilonova ejecta with energy $E_{rm ej} approx 10^{53} rm erg$, as expected for a long-lived magnetar remnant, we can already rule out ejecta masses $M_{rm ej} lesssim0.03 mathrm{M}_odot$ for the most likely range of circumburst densities $ngtrsim 10^{-3}$ cm$^{-3}$. Observations on timescales of $approx$3-10 yr after the merger will probe larger ejecta masses up to $M_{rm ej} sim 0.1 mathrm{M}_odot$, providing a robust test to the magnetar scenario.
We present a search for late-time rebrightening of radio emission from three supernovae (SNe) with associated gamma-ray bursts (GRBs). It has been previously proposed that the unusually energetic SNe associated with GRBs should enter the Sedov-Taylor phase decades after the stellar explosion, and this SN remnant emission will outshine the GRB radio afterglow and be detectable at significant distances. We place deep limits on the radio luminosity of GRB 980425/SN 1998bw, GRB 030329/SN 2003dh and GRB 060218/SN 2006aj, 10-18 years after explosion, with our deepest limit being $L_{ u}$ $< 4 times 10^{26}$ erg s$^{-1}$ Hz$^{-1}$ for GRB 980425/SN 1998bw. We put constraints on the density of the surrounding medium for various assumed values of the microphysical parameters related to the magnetic field and synchrotron-emitting electrons. For GRB 060218/SN 2006aj and GRB 980425/SN 1998bw, these density limits have implications for the density profile of the surrounding medium, while the non-detection of GRB 030329/SN 2003dh implies that its afterglow will not be detectable anymore at GHz frequencies.
Massive, rapidly-spinning magnetar remnants produced as a result of binary neutron star (BNS) mergers may deposit a fraction of their energy into the surrounding kilonova ejecta, powering a synchrotron radio signal from the interaction of the ejecta with the circumburst medium. We present 6.0 GHz Very Large Array (VLA) observations of nine, low-redshift short gamma-ray bursts (SGRBs; $z<0.5$) on rest-frame timescales of $approx2.4-13.9$ yr following the bursts. We place $3sigma$ limits on radio continuum emission of $F_{ u}lesssim6-20,mu$Jy at the burst positions, or $L_{ u}lesssim(0.6-8.3)times10^{28}$erg s$^{-1}$Hz$^{-1}$. Comparing these limits with new light curve modeling which properly incorporates relativistic effects, we obtain limits on the energy deposited into the ejecta of $E_{ej}lesssim(0.6-6.7)times 10^{52}$erg ($E_{ej}lesssim(1.8-17.6)times10^{52}$erg) for an ejecta mass of $0.03,M_{odot}$ ($0.1,M_{odot}$). We present a uniform re-analysis of 27 SGRBs with $5.5-6.0$ GHz observations, and find that $gtrsim50%$ of SGRBs did not form stable magnetar remnants in their mergers. Assuming SGRBs are produced by BNS mergers drawn from the Galactic BNS population plus an additional component of high-mass GW194025-like mergers in a fraction $f_{GW190425}$ of cases, we place constraints on the maximum mass of a non-rotating neutron star (NS) ($M_{TOV}$), finding $M_{TOV}lesssim2.23,M_{odot}$ for $f_{GW190425}=0.4$; this limit increases for larger values of $f_{GW190425}$. The detection (or lack thereof) of radio remnants in untargeted surveys such as the VLA Sky Survey (VLASS) could provide more stringent constraints on the fraction of mergers that produce stable remnants. If $gtrsim30-300$ radio remnants are discovered in VLASS, this suggests that SGRBs are a biased population of BNS mergers in terms of the stability of the remnants they produce.
We examine a sample of 21 gamma-ray burst (GRB) afterglow light curves at radio frequencies, and compare them to the X-ray and/or optical properties of the afterglows and to the predictions of the standard jet/fireball model. Our sample includes every textit{Swift} GRB with an X-ray light curve indicating a jet break and with a published radio light curve, as well as several other targets with observed X-ray or and/optical jet breaks. We examine the late-time decline of each burst, and attempt to fit an analytical model based on the standard GRB afterglow equations to each data set. We show that most of the events in our textit{Swift} GRB sample are incompatible with the radio light curve behavior predicted by conventional afterglow theory. Many exhibit a late-time radio decline incompatible with the post-break X-ray or optical afterglow. Only one radio afterglow in this sample, at any time, shows the eventually expected decline of $sim t^{-2}$, although two others show it in their mm light curve. Several others remain consistent with the standard model if such a decline began after the observations. The radio behavior alone does not, however, indicate whether a GRB can be fit by our modeling code. Indeed, several of the well-fit GRBs may only appear so due to a lack of multi-wavelength data. While a second source of emission can account for some of the anomalous radio behavior, our tests indicate this is often not the case unless the main jet component is simultaneously suppressed.
The study of stripped-envelope core-collapse supernovae (SNe), with evidence for strong interaction of SN ejecta with the circumstellar medium (CSM), provides insights into the pre-supernova progenitor, and a fast-forwarded view of the progenitor mass-loss history. In this context, we present late-time radio observations of SN2004dk, a type Ibc supernova located in the galaxy, NGC 6118, at a distance of $d_L approx 23$ Mpc. About 15 years after explosion, SN2004dk has shown evidence for H$alpha$ emission, possibly linked to the SN ejecta interacting with an H-rich CSM. Using data from the VLA Low Band Ionosphere and Transient Experiment (VLITE), we confirm the presence of a late-time radio re-brightening accompanying the observed H$alpha$ emission. We model the SN2004dk radio light curves within the (spherically symmetric) synchrotron-self-absorption (SSA) model. Within this model, our VLITE observations combined with previously collected VLA data favor an interpretation of SN2004dk as a strongly CSM-interacting radio SN going through a complex environment shaped by a non-steady mass-loss from the SN progenitor.
There is growing evidence that a clear distinction between magnetars and radio pulsars may not exist, implying the population of neutron stars that exhibit both radio pulsations and bursting activities could be potentially large. In this situation, new insights into the burst mechanism could be gained by combining the temporal behavior of radio pulsations. We present a general model for radio suppression by relativistic $e^{pm}$ plasma outflows at the onset of magnetar flares. A sudden ejection of magnetic energy into the magnetosphere would generate a fireball plasma, which is promptly driven to expand at relativistic speed. This would make the plasma cutoff frequency significantly higher than the rest frame radio frequency, resulting in the suppression of radio waves. We analytically show that any GHz radio emission arising from the magnetosphere is suppressed for $sim100 {rm s}$, depending on the total fireball energy. On the other hand, thermal radiation is expected from the hot spot(s) on the stellar surface created by an inflow of dense plasma, which could be the origin of short bursts. Since our hypothesis predicts radio suppression in coincidence with short bursts, this could be an indirect method to constrain the occurrence rate of short bursts at the faint end that remain undetected by X-ray detectors. Furthermore, ultra-fast gamma-ray flashes from the fireball photosphere is also expected as a smoking gun, although the onboard detection is challenging due to its extremely short duration $simmu$s. Finally, our model is applied to the radio pulsar with magnetar-like activities, PSR J1119-6127 in light of recent observations. Implications for fast radio bursts and the possibility of plasma lensing are also discussed.