No Arabic abstract
Pressure evolution of the superconducting kagome metal CsV$_3$Sb$_5$ is studied with single-crystal x-ray diffraction and density-functional band-structure calculations. A highly anisotropic compression observed up to 5 GPa is ascribed to the fast shrinkage of the Cs-Sb distances and suppression of Cs rattling motion. This prevents Sb displacements required to stabilize the three-dimensional charge-density-wave (CDW) state and elucidates the disappearance of the CDW already at 2 GPa despite only minor changes in the electronic structure. At higher pressures, vanadium bands still change only marginally, whereas antimony bands undergo a major reconstruction caused by the gradual formation of the interlayer Sb-Sb bonds. Our results highlight the central role of Sb atoms in the stabilization of a three-dimensional CDW and re-entrant superconductivity of a kagome metal.
The recently discovered kagome superconductor CsV$_3$Sb$_5$ ($T_c simeq 2.5$ K) has been found to host charge order as well as a non-trivial band topology, encompassing multiple Dirac points and probable surface states. Such a complex and phenomenologically rich system is, therefore, an ideal playground for observing unusual electronic phases. Here, we report on microscopic studies of its anisotropic superconducting properties by means of transverse-field muon spin rotation ($mu$SR) experiments. The temperature dependences of the in-plane and out-of-plane components of the magnetic penetration depth $lambda_{ab}^{-2}(T)$ and $lambda_{c}^{-2}(T)$ indicate that the superconducting order parameter exhibits a two-gap ($s+s$)-wave symmetry, reflecting the multiple Fermi surfaces of CsV3Sb5. The multiband nature of its superconductivity is further validated by the different temperature dependences of the anisotropic magnetic penetration depth $gamma_lambda(T)$ and upper critical field $gamma_{rm B_{c2}}(T)$, both in close analogy with the well known two-gap superconductor MgB$_2$. Remarkably, the high value of the $T_c/lambda^{-2}(0)$ ratio in both field orientations strongly suggests the unconventional nature of superconductivity. The relaxation rates obtained from zero field $mu$SR experiments do not show noticeable change across the superconducting transition, indicating that superconductivity does not break time reversal symmetry.
The recently discovered layered kagome metals AV$_3$Sb$_5$ (A=K, Rb, Cs) exhibit diverse correlated phenomena, which are intertwined with a topological electronic structure with multiple van Hove singularities (VHSs) in the vicinity of the Fermi level. As the VHSs with their large density of states enhance correlation effects, it is of crucial importance to determine their nature and properties. Here, we combine polarization-dependent angle-resolved photoemission spectroscopy with density functional theory to directly reveal the sublattice properties of 3d-orbital VHSs in CsV$_3$Sb$_5$. Four VHSs are identified around the M point and three of them are close to the Fermi level, with two having sublattice-pure and one sublattice-mixed nature. Remarkably, the VHS just below the Fermi level displays an extremely flat dispersion along MK, establishing the experimental discovery of higher-order VHS. The characteristic intensity modulation of Dirac cones around K further demonstrates the sublattice interference embedded in the electronic structure. The crucial insights into the electronic structure, revealed by our work, provide a solid starting point for the understanding of the intriguing correlation phenomena in the kagome metals AV$_3$Sb$_5$.
The recently discovered kagome metal series $A$V$_3$Sb$_5$ ($A$=K, Rb, Cs) exhibits topologically nontrivial band structures, chiral charge order and superconductivity, presenting a unique platform for realizing exotic electronic states. The nature of the superconducting state and the corresponding pairing symmetry are key questions that demand experimental clarification. Here, using a technique based on the tunneling diode oscillator, the magnetic penetration depth $Deltalambda(T)$ of CsV$_3$Sb$_5$ was measured down to 0.07 K. A clear exponential behavior in $Deltalambda(T)$ with marked deviations from a $T$ or $T^2$ temperature dependence is observed at low temperatures, indicating a deficiency of nodal quasiparticles. Temperature dependence of the superfluid density and electronic specific heat can be described by two-gap $s$-wave superconductivity, consistent with the presence of multiple Fermi surfaces in CsV$_3$Sb$_5$. These results evidence nodeless superconductivity in CsV$_3$Sb$_5$ under ambient pressure, and constrain the allowed pairing symmetry.
Recent high pressure experiments discovered abnormal double-dome superconductivities in the newly-synthesized kagome materials $A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs), which also host abundant emergent quantum phenomena such as charge density wave (CDW), anomalous Hall effect, nontrivial topological property, etc. In this work, by using first-principles electronic structure calculations, we have studied the CDW state, superconductivity, and topological property in CsV$_3$Sb$_5$ under pressures ($<$ 50 GPa). Based on the electron-phonon coupling theory, our calculated superconducting $T_text{c}$s are consistent with the observed ones in the second superconducting dome at high pressure, but are much higher than the measured values at low pressure. The further calculations including the Hubbard U indicate that with modest electron-electron correlation the magnetism on the V atoms exists at low pressure and diminishes gradually at high pressure. We thus propose that the experimentally observed superconductivity in CsV$_3$Sb$_5$ at ambient/low pressures may still belong to the conventional Bardeen-Cooper-Schrieffer (BCS) type but is partially suppressed by the V magnetism, while the superconductivity under high pressure is fully conventional without invoking the magnetism. We also predict that there are a second weak CDW state and topological phase transitions in CsV$_3$Sb$_5$ under pressures. Our theoretical assertion calls for future experimental examination.
The diversity of emergent phenomena in quantum materials often arises from the interplay between different physical energy scales or broken symmetries. Cooperative interactions among them are rare; however, when they do occur, they often stabilize fundamentally new ground states or phase behaviors. For instance, a pair density wave can form when the superconducting order parameter borrows spatial periodical variation from charge order; a topological superconductor can arise when topologically nontrivial electronic states proximitize with or participate in the formation of the superconducting condensate. Here, we report spectroscopic evidence for a unique synergy of topology and correlation effects in the kagome superconductor CsV$_3$Sb$_5$ - one where topologically nontrivial surface states are pushed below the Fermi energy (E$_F$) by charge order, making the topological physics active near E$_F$ upon entering the superconducting state. Flat bands are observed, indicating that electron correlation effects are also at play in this system. Our results reveal the peculiar electronic structure of CsV$_3$Sb$_5$, which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices. They also establish CsV$_3$Sb$_5$ as a unique platform for exploring the cooperation between the charge order, topology, correlation effects and superconductivity.