Do you want to publish a course? Click here

Approximability of all finite CSPs in the dynamic streaming setting

86   0   0.0 ( 0 )
 Added by Alexander Golovnev
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A constraint satisfaction problem (CSP), Max-CSP$({cal F})$, is specified by a finite set of constraints ${cal F} subseteq {[q]^k to {0,1}}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications of constraints from ${cal F}$ to subsequences of the $n$ variables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the $(gamma,beta)$-approximation version of the problem for parameters $0 leq beta < gamma leq 1$, the goal is to distinguish instances where at least $gamma$ fraction of the constraints can be satisfied from instances where at most $beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of this problem in the context of streaming algorithms and give a dichotomy result in the dynamic setting, where constraints can be inserted or deleted. Specifically, for every family ${cal F}$ and every $beta < gamma$, we show that either the approximation problem is solvable with polylogarithmic space in the dynamic setting, or not solvable with $o(sqrt{n})$ space. We also establish tight inapproximability results for a broad subclass in the streaming insertion-only setting. Our work builds on, and significantly extends previous work by the authors who consider the special case of Boolean variables ($q=2$), singleton families ($|{cal F}| = 1$) and where constraints may be placed on variables or their negations. Our framework extends non-trivially the previous work allowing us to appeal to richer norm estimation algorithms to get our algorithmic results. For our negative results we introduce new variants of the communication problems studied in the previous work, build new reductions for these problems, and extend the technical parts of previous works.



rate research

Read More

A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:{-1,1}^kto{0,1}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint application applies the constraint to $k$ literals chosen from the $n$ variables and their negations. The goal is to compute the maximum number of constraints that can be satisfied by a Boolean assignment to the $n$~variables. In the $(gamma,beta)$-approximation version of the problem for parameters $gamma geq beta in [0,1]$, the goal is to distinguish instances where at least $gamma$ fraction of the constraints can be satisfied from instances where at most $beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of Max-CSP$(f)$ in the (dynamic) streaming setting, where constraints are inserted (and may also be deleted in the dynamic setting) one at a time. We completely characterize the approximability of all Boolean CSPs in the dynamic streaming setting. Specifically, given $f$, $gamma$ and $beta$ we show that either (1) the $(gamma,beta)$-approximation version of Max-CSP$(f)$ has a probabilistic dynamic streaming algorithm using $O(log n)$ space, or (2) for every $varepsilon > 0$ the $(gamma-varepsilon,beta+varepsilon)$-approximation version of Max-CSP$(f)$ requires $Omega(sqrt{n})$ space for probabilistic dynamic streaming algorithms. We also extend previously known results in the insertion-only setting to a wide variety of cases, and in particular the case of $k=2$ where we get a dichotomy and the case when the satisfying assignments of $f$ support a distribution on ${-1,1}^k$ with uniform marginals.
We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on $n$ variables taking values in ${0,ldots,q-1}$, we prove that improving over the trivial approximability by a factor of $q$ requires $Omega(n)$ space even on instances with $O(n)$ constraints. We also identify a broad subclass of problems for which any improvement over the trivial approximability requires $Omega(n)$ space. The key technical core is an optimal, $q^{-(k-1)}$-inapproximability for the case where every constraint is given by a system of $k-1$ linear equations $bmod; q$ over $k$ variables. Prior to our work, no such hardness was known for an approximation factor less than $1/2$ for any CSP. Our work builds on and extends the work of Kapralov and Krachun (Proc. STOC 2019) who showed a linear lower bound on any non-trivial approximation of the max cut in graphs. This corresponds roughly to the case of Max $k$-LIN-$bmod; q$ with $k=q=2$. Each one of the extensions provides non-trivial technical challenges that we overcome in this work.
We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for efficient refutation of fully random instances. Our main technical contribution is an algorithm to strongly refute semi-random instances of the Boolean $k$-XOR problem on $n$ variables that have $widetilde{O}(n^{k/2})$ constraints. (In a semi-random $k$-XOR instance, the equations can be arbitrary and only the right-hand sides are random.) One of our key insights is to identify a simple combinatorial property of random XOR instances that makes spectral refutation work. Our approach involves taking an instance that does not satisfy this property (i.e., is emph{not} pseudorandom) and reducing it to a partitioned collection of $2$-XOR instances. We analyze these subinstances using a carefully chosen quadratic form as a proxy, which in turn is bounded via a combination of spectral methods and semidefinite programming. The analysis of our spectral bounds relies only on an off-the-shelf matrix Bernstein inequality. Even for the purely random case, this leads to a shorter proof compared to the ones in the literature that rely on problem-specific trace-moment computations.
We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by $Omegaleft(frac{log n}{log log n}right)$ levels of the Sherali-Adams hierarchy on instances of size $n$. It was proved by Chan et al. [FOCS 2013] that any polynomial size LP extended formulation is no stronger than relaxations obtained by a super-constant levels of the Sherali-Adams hierarchy.. Combining this with our result also implies that any polynomial size LP extended formulation is no stronger than the basic LP. Using our techniques, we also simplify and strengthen the result by Khot et al. [STOC 2014] on (strong) approximation resistance for LPs. They provided a necessary and sufficient condition under which $Omega(log log n)$ levels of the Sherali-Adams hierarchy cannot achieve an approximation better than a random assignment. We simplify their proof and strengthen the bound to $Omegaleft(frac{log n}{log log n}right)$ levels.
We study the approximability of the NP-complete textsc{Maximum Minimal Feedback Vertex Set} problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: textsc{Maximum Minimal Vertex Cover}, for which the best achievable approximation ratio is $sqrt{n}$, and textsc{Upper Dominating Set}, which does not admit any $n^{1-epsilon}$ approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for textsc{Max Min FVS} with a ratio of $O(n^{2/3})$, as well as a matching hardness of approximation bound of $n^{2/3-epsilon}$, improving the previous known hardness of $n^{1/2-epsilon}$. The approximation algorithm also gives a cubic kernel when parameterized by the solution size. Along the way, we also obtain an $O(Delta)$-approximation and show that this is asymptotically best possible, and we improve the bound for which the problem is NP-hard from $Deltage 9$ to $Deltage 6$. Having settled the problems approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio $r$, produces an $r$-approximate solution in time $n^{O(n/r^{3/2})}$. This time-approximation trade-off is essentially tight: we show that under the ETH, for any ratio $r$ and $epsilon>0$, no algorithm can $r$-approximate this problem in time $n^{O((n/r^{3/2})^{1-epsilon})}$, hence we precisely characterize the approximability of the problem for the whole spectrum between polynomial and sub-exponential time, up to an arbitrarily small constant in the second exponent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا