No Arabic abstract
Astrometry and photometry from {it Gaia} and spectroscopic data from the {it Gaia}-ESO Survey (GES) are used to identify the lithium depletion boundary (LDB) in the young cluster NGC 2232. A specialised spectral line analysis procedure was used to recover the signature of undepleted lithium in very low luminosity cluster members. An age of $38pm 3$ Myr is inferred by comparing the LDB location in absolute colour-magnitude diagrams (CMDs) with the predictions of standard models. This is more than twice the age derived from fitting isochrones to low-mass stars in the CMD with the same models. Much closer agreement between LDB and CMD ages is obtained from models that incorporate magnetically suppressed convection or flux-blocking by dark, magnetic starspots. The best agreement is found at ages of $45-50$,Myr for models with high levels of magnetic activity and starspot coverage fractions $>50$ per cent, although a uniformly high spot coverage does not match the CMD well across the full luminosity range considered.
Reconstructing the Galactic evolution of lithium (Li) is the main tool used to constrain the source(s) of Li enrichment in the Galaxy. Recent results have suggested a decline in Li at supersolar metallicities, which may indicate reduced production. We exploit the unique characteristics of the Gaia-ESO Survey open star cluster sample to further investigate this issue and to better constrain the evolution of Li at high metallicity. We trace the the upper envelope of Li abundance versus metallicity evolution using 18 clusters and considering members that should not have suffered any Li depletion. At variance with previous claims, we do not find any evidence of a Li decrease at high metallicity. The most metal-rich clusters in the sample ([Fe/H] about 0.3) actually show the highest Li abundances, with A(Li) > 3.4. Our results clearly show that previous findings, which were based on field stars, were affected by selection effects. The metal-rich population in the solar neighbourhood is composed of relatively old and cool stars that have already undergone some Li depletion; hence, their measured Li does not represent the initial interstellar medium abundance, but a lower limit to it.
We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members, and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration et al. (2017), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets.
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 $M_{odot}$). These observations are compared with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. In six clusters, we find about 35% RC stars with Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation was for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that the possible Li production is ubiquitous. For about 65% RC giants we can only determine abundance upper limits that could be hiding very low Li abundances. Our results indicate a possible production of Li during the RC, at levels that would not classify the stars as Li rich. Determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models with an additional mixing episode close to the He flash.
Pismis 18 is a moderately populated, intermediate-age open cluster located within the solar circle at a Galactocentric distance of about 7 kpc. Few open clusters have been studied in detail in the inner disc region before the Gaia-ESO Survey. New data from the Gaia-ESO Survey allowed us to conduct an extended radial velocity membership study as well as spectroscopic metallicity and detailed chemical abundance measurements for this cluster. Gaia-ESO Survey data for 142 potential members, lying on the upper MS and on the red clump, yielded radial velocity measurements, which, together with proper motion measurements from the Gaia DR2, were used to determine the systemic velocity of the cluster and membership of individual stars. Photometry from Gaia DR2 was used to re-determine cluster parameters based on high confidence member stars only. Cluster abundance measurements of six radial-velocity member stars with UVES high-resolution spectroscopy are presented for 23 elements. According to the new estimates, based on high confidence members, Pismis 18 has an age of $700^{+40}_{-50}$ Myr, interstellar reddening of E(B-V) = $0.562^{+0.012}_{-0.026}$ mag and a de-reddened distance modulus of $DM_0 = 11.96^{+0.10}_{-0.24}$ mag. The median metallicity of the cluster (using the six UVES stars) is [Fe/H] = $+0.23 pm 0.05$ dex, with [$alpha$/Fe]= $0.07 pm 0.13$ and a slight enhancement of s- and r- neutron-capture elements. With the present work, we fully characterized the open cluster Pismis 18, confirming its present location in the inner disc. We estimated a younger age than the previous literature values and gave, for the first time, its metallicity and its detailed abundances. Its [$alpha$/Fe] and [s-process/Fe], both slightly super-solar, are in agreement with other inner-disc open clusters observed by the Gaia-ESO survey. [abridged]
Context: Trumpler 23 is a moderately populated, intermediate-age open cluster within the solar circle at a Rgc ~6 kpc. It is in a crowded field very close to the Galactic plane and the color-magnitude diagram shows significant field contamination and possible differential reddening; it is a relatively understudied cluster for these reasons, but its location makes it a key object for determining Galactic abundance distributions. Aims: New data from the Gaia-ESO Survey enable the first ever radial velocity and spectroscopic metallicity measurements for this cluster. We aim to use velocities to isolate cluster members, providing more leverage for determining cluster parameters. Methods: Gaia-ESO Survey data for 167 potential members have yielded radial velocity measurements, which were used to determine the systemic velocity of the cluster and membership of individual stars. Atmospheric parameters were also used as a check on membership when available. Literature photometry was used to re-determine cluster parameters based on radial velocity member stars only; theoretical isochrones are fit in the V, V-I diagram. Cluster abundance measurements of ten radial-velocity member stars with high-resolution spectroscopy are presented for 24 elements. These abundances have been compared to local disk stars, and where possible placed within the context of literature gradient studies. Results: We find Trumpler 23 to have an age of 0.80 +/- 0.10 Gyr, significant differential reddening with an estimated mean cluster E(V-I) of 1.02 +0.14/-0.09, and an apparent distance modulus of 14.15 +/- 0.20. We find an average cluster metallicity of [Fe/H] = 0.14 +/- 0.03 dex, a solar [alpha/Fe] abundance, and notably subsolar [s-process/Fe] abundances.