No Arabic abstract
Bike sharing demand is increasing in large cities worldwide. The proper functioning of bike-sharing systems is, nevertheless, dependent on a balanced geographical distribution of bicycles throughout a day. In this context, understanding the spatiotemporal distribution of check-ins and check-outs is key for station balancing and bike relocation initiatives. Still, recent contributions from deep learning and distance-based predictors show limited success on forecasting bike sharing demand. This consistent observation is hypothesized to be driven by: i) the strong dependence between demand and the meteorological and situational context of stations; and ii) the absence of spatial awareness as most predictors are unable to model the effects of high-low station load on nearby stations. This work proposes a comprehensive set of new principles to incorporate both historical and prospective sources of spatial, meteorological, situational and calendrical context in predictive models of station demand. To this end, a new recurrent neural network layering composed by serial long-short term memory (LSTM) components is proposed with two major contributions: i) the feeding of multivariate time series masks produced from historical context data at the input layer, and ii) the time-dependent regularization of the forecasted time series using prospective context data. This work further assesses the impact of incorporating different sources of context, showing the relevance of the proposed principles for the community even though not all improvements from the context-aware predictors yield statistical significance.
Unlike the traditional dock-based systems, dockless bike-sharing systems are more convenient for users in terms of flexibility. However, the flexibility of these dockless systems comes at the cost of management and operation complexity. Indeed, the imbalanced and dynamic use of bikes leads to mandatory rebalancing operations, which impose a critical need for effective bike traffic flow prediction. While efforts have been made in developing traffic flow prediction models, existing approaches lack interpretability, and thus have limited value in practical deployment. To this end, we propose an Interpretable Bike Flow Prediction (IBFP) framework, which can provide effective bike flow prediction with interpretable traffic patterns. Specifically, by dividing the urban area into regions according to flow density, we first model the spatio-temporal bike flows between regions with graph regularized sparse representation, where graph Laplacian is used as a smooth operator to preserve the commonalities of the periodic data structure. Then, we extract traffic patterns from bike flows using subspace clustering with sparse representation to construct interpretable base matrices. Moreover, the bike flows can be predicted with the interpretable base matrices and learned parameters. Finally, experimental results on real-world data show the advantages of the IBFP method for flow prediction in dockless bike sharing systems. In addition, the interpretability of our flow pattern exploitation is further illustrated through a case study where IBFP provides valuable insights into bike flow analysis.
As an economical and healthy mode of shared transportation, Bike Sharing System (BSS) develops quickly in many big cities. An accurate prediction method can help BSS schedule resources in advance to meet the demands of users, and definitely improve operating efficiencies of it. However, most of the existing methods for similar tasks just utilize spatial or temporal information independently. Though there are some methods consider both, they only focus on demand prediction in a single location or between location pairs. In this paper, we propose a novel deep learning method called Spatial-Temporal Dynamic Interval Network (STDI-Net). The method predicts the number of renting and returning orders of multiple connected stations in the near future by modeling joint spatial-temporal information. Furthermore, we embed an additional module that generates dynamical learnable mappings for different time intervals, to include the factor that different time intervals have a strong influence on demand prediction in BSS. Extensive experiments are conducted on the NYC Bike dataset, the results demonstrate the superiority of our method over existing methods.
How do we determine whether two or more clothing items are compatible or visually appealing? Part of the answer lies in understanding of visual aesthetics, and is biased by personal preferences shaped by social attitudes, time, and place. In this work we propose a method that predicts compatibility between two items based on their visual features, as well as their context. We define context as the products that are known to be compatible with each of these item. Our model is in contrast to other metric learning approaches that rely on pairwise comparisons between item features alone. We address the compatibility prediction problem using a graph neural network that learns to generate product embeddings conditioned on their context. We present results for two prediction tasks (fill in the blank and outfit compatibility) tested on two fashion datasets Polyvore and Fashion-Gen, and on a subset of the Amazon dataset; we achieve state of the art results when using context information and show how test performance improves as more context is used.
Localization of street objects from images has gained a lot of attention in recent years. We propose an approach to improve asset geolocation from street view imagery by enhancing the quality of the metadata associated with the images using Structure from Motion. The predicted object geolocation is further refined by imposing contextual geographic information extracted from OpenStreetMap. Our pipeline is validated experimentally against the state of the art approaches for geotagging traffic lights.
Bike Sharing Systems (BSSs) have been adopted in many major cities of the world due to traffic congestion and carbon emissions. Although there have been approaches to exploiting either bike trailers via crowdsourcing or carrier vehicles to reposition bikes in the ``right stations in the ``right time, they do not jointly consider the usage of both bike trailers and carrier vehicles. In this paper, we aim to take advantage of both bike trailers and carrier vehicles to reduce the loss of demand with regard to the crowdsourcing of bike trailers and the fuel cost of carrier vehicles. In the experiment, we exhibit that our approach outperforms baselines in several datasets from bike sharing companies.