Do you want to publish a course? Click here

A Dataset and System for Real-Time Gun Detection in Surveillance Video Using Deep Learning

218   0   0.0 ( 0 )
 Added by Weijun Tan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Gun violence is a severe problem in the world, particularly in the United States. Deep learning methods have been studied to detect guns in surveillance video cameras or smart IP cameras and to send a real-time alert to security personals. One problem for the development of gun detection algorithms is the lack of large public datasets. In this work, we first publish a dataset with 51K annotated gun images for gun detection and other 51K cropped gun chip images for gun classification we collect from a few different sources. To our knowledge, this is the largest dataset for the study of gun detection. This dataset can be downloaded at www.linksprite.com/gun-detection-datasets. We present a gun detection system using a smart IP camera as an embedded edge device, and a cloud server as a manager for device, data, alert, and to further reduce the false positive rate. We study to find solutions for gun detection in an embedded device, and for gun classification on the edge device and the cloud server. This edge/cloud framework makes the deployment of gun detection in the real world possible.



rate research

Read More

Nowadays, billions of videos are online ready to be viewed and shared. Among an enormous volume of videos, some popular ones are widely viewed by online users while the majority attract little attention. Furthermore, within each video, different segments may attract significantly different numbers of views. This phenomenon leads to a challenging yet important problem, namely fine-grained video attractiveness prediction. However, one major obstacle for such a challenging problem is that no suitable benchmark dataset currently exists. To this end, we construct the first fine-grained video attractiveness dataset, which is collected from one of the most popular video websites in the world. In total, the constructed FVAD consists of 1,019 drama episodes with 780.6 hours covering different categories and a wide variety of video contents. Apart from the large amount of videos, hundreds of millions of user behaviors during watching videos are also included, such as view counts, fast-forward, fast-rewind, and so on, where view counts reflects the video attractiveness while other engagements capture the interactions between the viewers and videos. First, we demonstrate that video attractiveness and different engagements present different relationships. Second, FVAD provides us an opportunity to study the fine-grained video attractiveness prediction problem. We design different sequential models to perform video attractiveness prediction by relying solely on video contents. The sequential models exploit the multimodal relationships between visual and audio components of the video contents at different levels. Experimental results demonstrate the effectiveness of our proposed sequential models with different visual and audio representations, the necessity of incorporating the two modalities, and the complementary behaviors of the sequential prediction models at different levels.
Video super-resolution (VSR) technology excels in reconstructing low-quality video, avoiding unpleasant blur effect caused by interpolation-based algorithms. However, vast computation complexity and memory occupation hampers the edge of deplorability and the runtime inference in real-life applications, especially for large-scale VSR task. This paper explores the possibility of real-time VSR system and designs an efficient and generic VSR network, termed EGVSR. The proposed EGVSR is based on spatio-temporal adversarial learning for temporal coherence. In order to pursue faster VSR processing ability up to 4K resolution, this paper tries to choose lightweight network structure and efficient upsampling method to reduce the computation required by EGVSR network under the guarantee of high visual quality. Besides, we implement the batch normalization computation fusion, convolutional acceleration algorithm and other neural network acceleration techniques on the actual hardware platform to optimize the inference process of EGVSR network. Finally, our EGVSR achieves the real-time processing capacity of [email protected]. Compared with TecoGAN, the most advanced VSR network at present, we achieve 85.04% reduction of computation density and 7.92x performance speedups. In terms of visual quality, the proposed EGVSR tops the list of most metrics (such as LPIPS, tOF, tLP, etc.) on the public test dataset Vid4 and surpasses other state-of-the-art methods in overall performance score. The source code of this project can be found on https://github.com/Thmen/EGVSR.
Interlacing is a widely used technique, for television broadcast and video recording, to double the perceived frame rate without increasing the bandwidth. But it presents annoying visual artifacts, such as flickering and silhouette serration, during the playback. Existing state-of-the-art deinterlacing methods either ignore the temporal information to provide real-time performance but lower visual quality, or estimate the motion for better deinterlacing but with a trade-off of higher computational cost. In this paper, we present the first and novel deep convolutional neural networks (DCNNs) based method to deinterlace with high visual quality and real-time performance. Unlike existing models for super-resolution problems which relies on the translation-invariant assumption, our proposed DCNN model utilizes the temporal information from both the odd and even half frames to reconstruct only the missing scanlines, and retains the given odd and even scanlines for producing the full deinterlaced frames. By further introducing a layer-sharable architecture, our system can achieve real-time performance on a single GPU. Experiments shows that our method outperforms all existing methods, in terms of reconstruction accuracy and computational performance.
In this paper, we propose a Distributed Intelligent Video Surveillance (DIVS) system using Deep Learning (DL) algorithms and deploy it in an edge computing environment. We establish a multi-layer edge computing architecture and a distributed DL training model for the DIVS system. The DIVS system can migrate computing workloads from the network center to network edges to reduce huge network communication overhead and provide low-latency and accurate video analysis solutions. We implement the proposed DIVS system and address the problems of parallel training, model synchronization, and workload balancing. Task-level parallel and model-level parallel training methods are proposed to further accelerate the video analysis process. In addition, we propose a model parameter updating method to achieve model synchronization of the global DL model in a distributed EC environment. Moreover, a dynamic data migration approach is proposed to address the imbalance of workload and computational power of edge nodes. Experimental results showed that the EC architecture can provide elastic and scalable computing power, and the proposed DIVS system can efficiently handle video surveillance and analysis tasks.
When producing a model to object detection in a specific context, the first obstacle is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. However, in the Small Size League (SSL), there is not such dataset available yet. This paper presents an open-source dataset to be used as a benchmark for real-time object detection in SSL. This work also presented a pipeline to train, deploy, and evaluate Convolutional Neural Networks (CNNs) models in a low-power embedded system. This pipeline was used to evaluate the proposed dataset with state-of-art optimized models. In this dataset, the MobileNet SSD v1 achieves 44.88% AP (68.81% AP50) at 94 Frames Per Second (FPS) while running on an SSL robot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا