Do you want to publish a course? Click here

The Hausdorff dimension of Julia sets of meromorphic functions in the Speiser class

86   0   0.0 ( 0 )
 Added by Walter Bergweiler
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that for each $din (0,2]$ there exists a meromorphic function $f$ such that the inverse function of $f$ has three singularities and the Julia set of $f$ has Hausdorff dimension $d$.



rate research

Read More

A function which is transcendental and meromorphic in the plane has at least two singular values. On one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either $2$ or $1/2$. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions can attain every number in $[0,2]$ (cf. cite{ac1}). In this paper, we show that number of singular values which is needed to attain every Hausdorff dimension of escaping sets is not more than $4$.
For any $ delta >0$ we construct an entire function $f$ with three singular values whose Julia set has Hausdorff dimension at most $1=delta$. Stallard proved that the dimension must be strictly larger than 1 whenever $f$ has a bounded singular set, but no examples with finite singular set and dimension strictly less than 2 were previously known.
273 - Weixiao Shen 2015
We show that the graph of the classical Weierstrass function $sum_{n=0}^infty lambda^n cos (2pi b^n x)$ has Hausdorff dimension $2+loglambda/log b$, for every integer $bge 2$ and every $lambdain (1/b,1)$. Replacing $cos(2pi x)$ by a general non-constant $C^2$ periodic function, we obtain the same result under a further assumption that $lambda b$ is close to $1$.
We prove that a long iteration of rational maps is expansive near boundaries of bounded type Siegel disks. This leads us to extend Petersens local connectivity result on the Julia sets of quadratic Siegel polynomials to a general case.
A. Sannami constructed an example of the differentiable Cantor set embedded in the real line whose difference set has a positive measure. In this paper, we generalize the definition of the difference sets for sets of the two dimensional Euclidean space as the sets of vectors between two sets, and estimate their measures. For the quadratic map Q_c(z)=z^2+c, we obtain that the measure of the difference set of its Julia set vanishes if |c|>3+sqrt{3}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا