Noisy Student learning for cross-institution brain hemorrhage detection


Abstract in English

Computed tomography (CT) is the imaging modality used in the diagnosis of neurological emergencies, including acute stroke and traumatic brain injury. Advances in deep learning have led to models that can detect and segment hemorrhage on head CT. PatchFCN, one such supervised fully convolutional network (FCN), recently demonstrated expert-level detection of intracranial hemorrhage on in-sample data. However, its potential for similar accuracy outside the training domain is hindered by its need for pixel-labeled data from outside institutions. Also recently, a semi-supervised technique, Noisy Student (NS) learning, demonstrated state-of-the-art performance on ImageNet by moving from a fully-supervised to a semi-supervised learning paradigm. We combine the PatchFCN and Noisy Student approaches, extending semi-supervised learning to an intracranial hemorrhage segmentation task. Surprisingly, the NS model performance surpasses that of a fully-supervised oracle model trained with image-level labels on the same data. It also performs comparably to another recently reported supervised model trained on a labeled dataset 600x larger than that used to train the NS model. To our knowledge, we are the first to demonstrate the effectiveness of semi-supervised learning on a head CT detection and segmentation task.

Download