Do you want to publish a course? Click here

One-pass Stochastic Gradient Descent in Overparametrized Two-layer Neural Networks

197   0   0.0 ( 0 )
 Added by Hanjing Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

There has been a recent surge of interest in understanding the convergence of gradient descent (GD) and stochastic gradient descent (SGD) in overparameterized neural networks. Most previous works assume that the training data is provided a priori in a batch, while less attention has been paid to the important setting where the training data arrives in a stream. In this paper, we study the streaming data setup and show that with overparamterization and random initialization, the prediction error of two-layer neural networks under one-pass SGD converges in expectation. The convergence rate depends on the eigen-decomposition of the integral operator associated with the so-called neural tangent kernel (NTK). A key step of our analysis is to show a random kernel function converges to the NTK with high probability using the VC dimension and McDiarmids inequality.



rate research

Read More

Recently, several studies have proven the global convergence and generalization abilities of the gradient descent method for two-layer ReLU networks. Most studies especially focused on the regression problems with the squared loss function, except for a few, and the importance of the positivity of the neural tangent kernel has been pointed out. On the other hand, the performance of gradient descent on classification problems using the logistic loss function has not been well studied, and further investigation of this problem structure is possible. In this work, we demonstrate that the separability assumption using a neural tangent model is more reasonable than the positivity condition of the neural tangent kernel and provide a refined convergence analysis of the gradient descent for two-layer networks with smooth activations. A remarkable point of our result is that our convergence and generalization bounds have much better dependence on the network width in comparison to related studies. Consequently, our theory provides a generalization guarantee for less over-parameterized two-layer networks, while most studies require much higher over-parameterization.
The superior performance of ensemble methods with infinite models are well known. Most of these methods are based on optimization problems in infinite-dimensional spaces with some regularization, for instance, boosting methods and convex neural networks use $L^1$-regularization with the non-negative constraint. However, due to the difficulty of handling $L^1$-regularization, these problems require early stopping or a rough approximation to solve it inexactly. In this paper, we propose a new ensemble learning method that performs in a space of probability measures, that is, our method can handle the $L^1$-constraint and the non-negative constraint in a rigorous way. Such an optimization is realized by proposing a general purpose stochastic optimization method for learning probability measures via parameterization using transport maps on base models. As a result of running the method, a transport map to output an infinite ensemble is obtained, which forms a residual-type network. From the perspective of functional gradient methods, we give a convergence rate as fast as that of a stochastic optimization method for finite dimensional nonconvex problems. Moreover, we show an interior optimality property of a local optimality condition used in our analysis.
We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected classification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.
Natural gradient descent has proven effective at mitigating the effects of pathological curvature in neural network optimization, but little is known theoretically about its convergence properties, especially for emph{nonlinear} networks. In this work, we analyze for the first time the speed of convergence of natural gradient descent on nonlinear neural networks with squared-error loss. We identify two conditions which guarantee efficient convergence from random initializations: (1) the Jacobian matrix (of networks output for all training cases with respect to the parameters) has full row rank, and (2) the Jacobian matrix is stable for small perturbations around the initialization. For two-layer ReLU neural networks, we prove that these two conditions do in fact hold throughout the training, under the assumptions of nondegenerate inputs and overparameterization. We further extend our analysis to more general loss functions. Lastly, we show that K-FAC, an approximate natural gradient descent method, also converges to global minima under the same assumptions, and we give a bound on the rate of this convergence.
We analyze the convergence of the averaged stochastic gradient descent for overparameterized two-layer neural networks for regression problems. It was recently found that a neural tangent kernel (NTK) plays an important role in showing the global convergence of gradient-based methods under the NTK regime, where the learning dynamics for overparameterized neural networks can be almost characterized by that for the associated reproducing kernel Hilbert space (RKHS). However, there is still room for a convergence rate analysis in the NTK regime. In this study, we show that the averaged stochastic gradient descent can achieve the minimax optimal convergence rate, with the global convergence guarantee, by exploiting the complexities of the target function and the RKHS associated with the NTK. Moreover, we show that the target function specified by the NTK of a ReLU network can be learned at the optimal convergence rate through a smooth approximation of a ReLU network under certain conditions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا