An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase space and Hilbert space formulations of QM we identify the assumption that led von Neumann to the Hilbert space formulation of QM which, in turn, precludes global dispersion free ensembles within the theory. The assumption, dubbed I, is: If a physical quantity $mathbf{A}$ has an operator $hat{A}$ then $f(mathbf{A})$ has the operator $f(hat{A})$. This assumption does not hold within the Phase Space formulation of QM. The hv interpretation of the Phase space formulation provides novel insight into the interrelation between dispersion and non commutativity of position and momentum (operators) within the Hilbert space formulation of QM and mitigates the criticism against von Neumanns no hidden variable theorem by, virtually, the consensus.