Towards Kitaev Spin Liquid in 3d Transition Metal Compounds


Abstract in English

This paper reviews the current progress on searching the Kitaev spin liquid state in 3d electron systems. Honeycomb cobaltates were recently proposed as promising candidates to realize the Kitaev spin liquid state, due to the more localized wave functions of 3d ions compared with that of 4d and 5d ions, and also the easy tunability of the exchange Hamiltonian in favor of Kitaev interaction. Several key parameters that have large impacts on the exchange constants, such as the charge-transfer gap and the trigonal crystal field, are identified and discussed. Specifically, tuning crystal field effect by means of strain or pressure is emphasized as an efficient phase control method driving the magnetically ordered cobaltates into the spin liquid state. Experimental results suggesting the existence of strong Kitaev interactions in layered honeycomb cobaltates are discussed. Finally, the future research directions are briefly outlined.

Download