Nonadiabatic evolution and thermodynamics of a time-dependent open quantum system


Abstract in English

We investigate the dynamic evolution and thermodynamic process of a driven quantum system immersed in a finite-temperature heat bath. A Born-Markovian quantum master equation is formally derived for the time-dependent system with discrete energy levels. This quantum master equation can be applied to situations with a broad range of driving speeds and bath temperatures and thus be used to study the finite-time quantum thermodynamics even when nonadiabatic transition and dissipation coexist. The dissipative Landau-Zener model is analyzed as an example. The population evolution and transition probability of the model reveal the importance of the competition between driving and dissipation beyond the adiabatic regime. Moreover, local maximums of irreversible entropy production occur at intermediate sweep velocity and finite temperature, which the low-dissipation model cannot describe.

Download