No Arabic abstract
Increasing volatilities within power transmission and distribution force power grid operators to amplify their use of communication infrastructure to monitor and control their grid. The resulting increase in communication creates a larger attack surface for malicious actors. Indeed, cyber attacks on power grids have already succeeded in causing temporary, large-scale blackouts in the recent past. In this paper, we analyze the communication infrastructure of power grids to derive resulting fundamental challenges of power grids with respect to cybersecurity. Based on these challenges, we identify a broad set of resulting attack vectors and attack scenarios that threaten the security of power grids. To address these challenges, we propose to rely on a defense-in-depth strategy, which encompasses measures for (i) device and application security, (ii) network security, (iii) physical security, as well as (iv) policies, procedures, and awareness. For each of these categories, we distill and discuss a comprehensive set of state-of-the art approaches, and identify further opportunities to strengthen cybersecurity in interconnected power grids.
Electric power grids are at risk of being compromised by high-impact cyber-security threats such as coordinated, timed attacks. Navigating this new threat landscape requires a deep understanding of the potential risks and complex attack processes in energy information systems, which in turn demands an unmanageable manual effort to timely process a large amount of cross-domain information. To provide an adequate basis to contextually assess and understand the situation of smart grids in case of coordinated cyber-attacks, we need a systematic and coherent approach to identify cyber incidents. In this paper, we present an approach that collects and correlates cross-domain cyber threat information to detect multi-stage cyber-attacks in energy information systems. We investigate the applicability and performance of the presented correlation approach and discuss the results to highlight challenges in domain-specific detection mechanisms.
The fundamental changes in power supply and increasing decentralization require more active grid operation and an increased integration of ICT at all power system actors. This trend raises complexity and increasingly leads to interactions between primary grid operation and ICT as well as different power system actors. For example, virtual power plants control various assets in the distribution grid via ICT to jointly market existing flexibilities. Failures of ICT or targeted attacks can thus have serious effects on security of supply and system stability. This paper presents a holistic approach to providing methods specifically for actors in the power system for prevention, detection, and reaction to ICT attacks and failures. The focus of our measures are solutions for ICT monitoring, systems for the detection of ICT attacks and intrusions in the process network, and the provision of actionable guidelines as well as a practice environment for the response to potential ICT security incidents.
Vehicle-to-Everything (V2X) will create many new opportunities in the area of wireless communications, while its feasibility on enabling vehicular positioning has not been explored yet. Vehicular positioning is a crucial operation for autonomous driving. Its complexity and stringent safety requirement render conventional technologies like RADAR and LIDAR inadequate. This article aims at investigating whether V2X can help vehicular positioning from different perspectives. We first explain V2Xs critical advantages over other approaches and suggest new scenarios of V2X-based vehicular positioning. Then we review the state-of-the-art positioning techniques discussed in the ongoing 3GPP standardization and point out their limitations. Lastly, some promising research directions for V2X-based vehicular positioning are presented, which shed light on realizing fully autonomous driving by overcoming the current barriers.
Smart local energy system (SLES) is considered as a promising pathway facilitating a more effective and localised operation, benefited from the complex information and communication technology (ICT) infrastructures and Internet of things (IoT) technologies. As a part of the critical infrastructure, it is important to not only put effective detection and management to tackle potential cybersecurity issues, but also require considerable numbers of standards to ensure the security of the internet of things system to minimise the risks. This study aims to review the existing standards, investigate how the compatibility with SLES development, and identify the area to focus on in the future. Although existing standards and protocols are highly fragmented, our findings suggest that many of them can meet the requirements of the applications and infrastructures of SLES. Additionally, many standards have been introduced to protect information security and personal privacy due to their increasing importance. The research also suggests that the industry needs to produce more affordable and cyber-secured devices and services. For the government and regulators, relevant guidelines on the minimum function and security requirements for applications should be provided. Additionally, compliance testing and certifications should be in place and carried out by an independent third party to ensure the components of SLES ecosystem with a satisfied security level by design.
Services computing can offer a high-level abstraction to support diverse applications via encapsulating various computing infrastructures. Though services computing has greatly boosted the productivity of developers, it is faced with three main challenges: privacy and security risks, information silo, and pricing mechanisms and incentives. The recent advances of blockchain bring opportunities to address the challenges of services computing due to its build-in encryption as well as digital signature schemes, decentralization feature, and intrinsic incentive mechanisms. In this paper, we present a survey to investigate the integration of blockchain with services computing. The integration of blockchain with services computing mainly exhibits merits in two aspects: i) blockchain can potentially address key challenges of services computing and ii) services computing can also promote blockchain development. In particular, we categorize the current literature of services computing based on blockchain into five types: services creation, services discovery, services recommendation, services composition, and services arbitration. Moreover, we generalize Blockchain as a Service (BaaS) architecture and summarize the representative BaaS platforms. In addition, we also outline open issues of blockchain-based services computing and BaaS.