Grid Interfaces to Electric Vehicle Chargers Using Statistically-Structured Power Conversion for Second-Use Batteries as Energy Buffering


Abstract in English

The rapid growth of electric vehicles (EVs) will include electric grid stress from EV chargers and produce a large number of diminished EV batteries. EV batteries are expected to retain about 80 % of their original capacity at the end of vehicle life. Employing these in second-use battery energy storage systems (2-BESS) as energy buffers for EV chargers further reduces the environmental impact of battery manufacturing and recycling. One of the obstacles that limits performance and cost to 2-BESS is the heterogeneity of second-use batteries. In this paper, we show that a structure for power processing within a 2-BESS with hierarchical partial power processing can be optimally designed for stochastic variation in EV demand, dynamic grid constraints, and statistical variation in battery capacity. Statistically-structured hierarchical partial power processing shows better battery energy utilization, lower derating, and higher captured value in comparison to conventional partial power processing and full power processing for similar power conversion cost.

Download