Do you want to publish a course? Click here

Murchison Widefield Array rapid-response observations of the short GRB 180805A

137   0   0.0 ( 0 )
 Added by Gemma Anderson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we present stringent low-frequency 185MHz limits on coherent radio emission associated with a short gamma-ray burst (SGRB). Our observations of the short GRB 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from Swift, corresponding to 83.7s post-burst. The SGRB was observed for 30m, resulting in a 3sigma persistent flux density upper-limit of 40.2mJy/beam. Transient searches were conducted at the Swift position of this GRB on 0.5s, 5s, 30s, and 2m timescales, resulting in 3sigma limits of 570-1830, 270-630, 200-420, and 100-200mJy/beam, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5s and 1.28MHz, resulting in a 6sigma fluence upper-limit range from 570Jyms at DM=3000pc/cm^3 (z~2.5) to 1750Jyms at DM=200pc/cm^3 (z~0.1). We compare the fluence prompt emission limit and the persistent upper-limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low-frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.



rate research

Read More

We introduce the Australia Telescope Compact Array (ATCA) rapid-response mode by presenting the first successful trigger on the short-duration gamma-ray burst (GRB) 181123B. Early-time radio observations of short GRBs may provide vital insights into the radio afterglow properties of Advanced LIGO- and Virgo-detected gravitational wave events, which will in turn inform follow-up strategies to search for counterparts within their large positional uncertainties. The ATCA was on target within 12.6 hr post-burst, when the source had risen above the horizon. While no radio afterglow was detected during the 8.3 hr observation, we obtained force-fitted flux densities of $7 pm 12$ and $15 pm 11~mu$Jy at 5.5 and 9 GHz, respectively. Afterglow modelling of GRB 181123B showed that the addition of the ATCA force-fitted radio flux densities to the Swift X-ray Telescope detections provided more stringent constraints on the fraction of thermal energy in the electrons (log$epsilon_e = -0.75^{+0.39}_{-0.40}$ rather than log$epsilon_e = -1.13^{+0.82}_{-1.2}$ derived without the inclusion of the ATCA values), which is consistent with the range of typical $epsilon_e$ derived from GRB afterglow modelling. This allowed us to predict that the forward shock may have peaked in the radio band $sim10$ days post-burst, producing detectable radio emission $gtrsim3-4$ days post-burst. Overall, we demonstrate the potential for extremely rapid radio follow-up of transients and the importance of triggered radio observations for constraining GRB blast wave properties, regardless of whether there is a detection, via the inclusion of force-fitted radio flux densities in afterglow modelling efforts.
We present a search for prompt radio emission associated with the short-duration gamma-ray burst (GRB) 150424A using the Murchison Widefield Array (MWA) at frequencies from 80-133 MHz. Our observations span delays of 23 s-30 min after the GRB, corresponding to dispersion measures of 100-7700 pc/cm^3. We see no excess flux in images with timescales of 4 s, 2 min, or 30 min, and set a 3 sigma flux density limit of 3.0 Jy at 132 MHz on the shortest timescales: some of the most stringent limits to date on prompt radio emission from any type of GRB. We use these limits to constrain a number of proposed models for coherent emission from short-duration GRBs, although we show that our limits are not particularly constraining for fast radio bursts because of reduced sensitivity for this pointing. Finally, we discuss the prospects for using the MWA to search for prompt radio emission from gravitational wave transients and find that while the flux density and luminosity limits are likely to be very constraining, the latency of the gravitational wave alert may limit the robustness of any conclusions.
It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.
257 - S. M. Ord , B. Crosse , D. Emrich 2015
The Murchison Widefield Array (MWA) is a Square Kilometre Array (SKA) Precursor. The telescope is located at the Murchison Radio--astronomy Observatory (MRO) in Western Australia (WA). The MWA consists of 4096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays (FPGAs), and others by Graphics Processing Units (GPUs) housed in general purpose rack mounted servers. The correlation capability required is approximately 8 TFLOPS (Tera FLoating point Operations Per Second). The MWA has commenced operations and the correlator is generating 8.3 TB/day of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Murchison Widefield Array (MWA) is a new low frequency interferometric radio telescope, operating in the remote Murchison Radio Observatory in Western Australia. In this paper we present the first MWA observations of the well known radio relics in Abell 3667 (A3667) between 120 and 226 MHz. We clearly detect the radio relics in A3667 and present flux estimates and spectral indices for these features. The average spectral index of the north-west (NW) and south-east (SE) relics is -0.9 +/- 0.1 between 120 and 1400 MHz. We are able to resolve spatial variation in the spectral index of the NW relic from -1.7 to -0.4, which is consistent with results found at higher frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا