Do you want to publish a course? Click here

On the vertex-degree based invariants of digraphs

111   0   0.0 ( 0 )
 Added by Deng Hanyuan
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $D=(V,A)$ be a digraphs without isolated vertices. A vertex-degree based invariant $I(D)$ related to a real function $varphi$ of $D$ is defined as a summation over all arcs, $I(D) = frac{1}{2}sum_{uvin A}{varphi(d_u^+,d_v^-)}$, where $d_u^+$ (resp. $d_u^-$) denotes the out-degree (resp. in-degree) of a vertex $u$. In this paper, we give the extremal values and extremal digraphs of $I(D)$ over all digraphs with $n$ non-isolated vertices. Applying these results, we obtain the extremal values of some vertex-degree based topological indices of digraphs, such as the Randi{c} index, the Zagreb index, the sum-connectivity index, the $GA$ index, the $ABC$ index and the harmonic index, and the corresponding extremal digraphs.



rate research

Read More

229 - Vance Faber 2014
We discuss transpose (sometimes called universal exchange or all-to-all) on vertex symmetric networks. We provide a method to compare the efficiency of transpose schemes on two different networks with a cost function based on the number processors and wires needed to complete a given algorithm in a given time.
Continuing the recent work of L. Zhong and K. Xu [MATCH Commun. Math. Comput. Chem.71(2014) 627-642], we determine inequalities among several vertex-degree-based topological indices; first geometric-arithmetic index(GA), augmented Zagreb index (AZI), Randi$acute{c}$ index (R), atom-bond connectivity index (ABC), sum-connectivity index (X)and harmonic index (H).
We introduce and study a digraph analogue of Stanleys $psi$-graphical arrangements from the perspectives of combinatorics and freeness. Our arrangements form a common generalization of various classes of arrangements in literature including the Catalan arrangement, the Shi arrangement, the Ish arrangement, and especially the arrangements interpolating between Shi and Ish recently introduced by Duarte and Guedes de Oliveira. The arrangements between Shi and Ish all are proved to have the same characteristic polynomial with all integer roots, thus raising the natural question of their freeness. We define two operations on digraphs, which we shall call king and coking elimination operations and prove that subject to certain conditions on the weight $psi$, the operations preserve the characteristic polynomials and freeness of the associated arrangements. As an application, we affirmatively prove that the arrangements between Shi and Ish all are free, and among them only the Ish arrangement has supersolvable cone.
In 1985, Mader conjectured the existence of a function $f$ such that every digraph with minimum out-degree at least $f(k)$ contains a subdivision of the transitive tournament of order $k$. This conjecture is still completely open, as the existence of $f(5)$ remains unknown. In this paper, we show that if $D$ is an oriented path, or an in-arborescence (i.e., a tree with all edges oriented towards the root) or the union of two directed paths from $x$ to $y$ and a directed path from $y$ to $x$, then every digraph with minimum out-degree large enough contains a subdivision of $D$. Additionally, we study Maders conjecture considering another graph parameter. The dichromatic number of a digraph $D$ is the smallest integer $k$ such that $D$ can be partitioned into $k$ acyclic subdigraphs. We show that any digraph with dichromatic number greater than $4^m (n-1)$ contains every digraph with $n$ vertices and $m$ arcs as a subdivision.
The study of asymptotic minimum degree thresholds that force matchings and tilings in hypergraphs is a lively area of research in combinatorics. A key breakthrough in this area was a result of H`{a}n, Person and Schacht who proved that the asymptotic minimum vertex degree threshold for a perfect matching in an $n$-vertex $3$-graph is $left(frac{5}{9}+o(1)right)binom{n}{2}$. In this paper we improve on this result, giving a family of degree sequence results, all of which imply the result of H`{a}n, Person and Schacht, and additionally allow one third of the vertices to have degree $frac{1}{9}binom{n}{2}$ below this threshold. Furthermore, we show that this result is, in some sense, tight.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا