Optimal Adaptive Strategies for Sequential Quantum Hypothesis Testing


Abstract in English

We consider sequential hypothesis testing between two quantum states using adaptive and non-adaptive strategies. In this setting, samples of an unknown state are requested sequentially and a decision to either continue or to accept one of the two hypotheses is made after each test. Under the constraint that the number of samples is bounded, either in expectation or with high probability, we exhibit adaptive strategies that minimize both types of misidentification errors. Namely, we show that these errors decrease exponentially (in the stopping time) with decay rates given by the measured relative entropies between the two states. Moreover, if we allow joint measurements on multiple samples, the rates are increased to the respective quantum relative entropies. We also fully characterize the achievable error exponents for non-adaptive strategies and provide numerical evidence showing that adaptive measurements are necessary to achieve our bounds under some additional assumptions.

Download