Do you want to publish a course? Click here

Relaxation of a Stationary State on a Quantum Computer Yields Unique Spectroscopic Fingerprint of the Computers Noise

357   0   0.0 ( 0 )
 Added by David Mazziotti
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum computing has the potential to revolutionize computing for certain classes of problems with exponential scaling, and yet this potential is accompanied by significant sensitivity to noise, requiring sophisticated error correction and mitigation strategies. Here we simulate the relaxations of stationary states at different frequencies on several quantum computers to obtain unique spectroscopic fingerprints of their noise. Response functions generated from the data reveal a clear signature of non-Markovian dynamics, demonstrating that each of the quantum computers acts as a non-Markovian bath with a unique colored noise profile. The study suggest that noisy intermediate-scale quantum computers (NISQ) provide a built-in noisy bath that can be analyzed from their simulation of closed quantum systems with the results potentially being harnessed for error mitigation or open-system simulation.



rate research

Read More

The simulation of strongly correlated many-electron systems is one of the most promising applications for near-term quantum devices. Here we use a class of eigenvalue solvers (presented in Phys. Rev. Lett. 126, 070504 (2021)) in which a contraction of the Schrodinger equation is solved for the two-electron reduced density matrix (2-RDM) to resolve the energy splittings of ortho-, meta-, and para-isomers of benzyne ${textrm C_6} {textrm H_4}$. In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schrodinger equation onto the two-electron space. The quantum solution of the anti-Hermitian part of the contracted Schrodinger equation (qACSE) provides a scalable approach with variational parameters that has its foundations in 2-RDM theory. Experimentally, a variety of error mitigation strategies enable the calculation, including a linear shift in the 2-RDM targeting the iterative nature of the algorithm as well as a projection of the 2-RDM onto the convex set of approximately $N$-representable 2-RDMs defined by the 2-positive (DQG) $N$-representability conditions. The relative energies exhibit single-digit millihartree errors, capturing a large part of the electron correlation energy, and the computed natural orbital occupations reflect the significant differences in the electron correlation of the isomers.
Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.
Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling non-local Jordan-Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground state energies of strongly correlated electronic systems.
As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates. We model the binding energy of ${rm H}_6$, ${rm H}_8$, ${rm H}_{10}$ and ${rm H}_{12}$ chains as well as the isomerization of diazene. We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to non-interacting fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction. This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by many proposals for correlated simulations of molecules and Hubbard models. Because non-interacting fermion evolutions are classically tractable to simulate, yet still generate highly entangled states over the computational basis, we use these experiments to benchmark the performance of our hardware while establishing a foundation for scaling up more complex correlated quantum simulations of chemistry.
We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا