Do you want to publish a course? Click here

With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations

77   0   0.0 ( 0 )
 Added by Debidatta Dwibedi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Self-supervised learning algorithms based on instance discrimination train encoders to be invariant to pre-defined transformations of the same instance. While most methods treat different views of the same image as positives for a contrastive loss, we are interested in using positives from other instances in the dataset. Our method, Nearest-Neighbor Contrastive Learning of visual Representations (NNCLR), samples the nearest neighbors from the dataset in the latent space, and treats them as positives. This provides more semantic variations than pre-defined transformations. We find that using the nearest-neighbor as positive in contrastive losses improves performance significantly on ImageNet classification, from 71.7% to 75.6%, outperforming previous state-of-the-art methods. On semi-supervised learning benchmarks we improve performance significantly when only 1% ImageNet labels are available, from 53.8% to 56.5%. On transfer learning benchmarks our method outperforms state-of-the-art methods (including supervised learning with ImageNet) on 8 out of 12 downstream datasets. Furthermore, we demonstrate empirically that our method is less reliant on complex data augmentations. We see a relative reduction of only 2.1% ImageNet Top-1 accuracy when we train using only random crops.

rate research

Read More

Deep Bregman divergence measures divergence of data points using neural networks which is beyond Euclidean distance and capable of capturing divergence over distributions. In this paper, we propose deep Bregman divergences for contrastive learning of visual representation and we aim to enhance contrastive loss used in self-supervised learning by training additional networks based on functional Bregman divergence. In contrast to the conventional contrastive learning methods which are solely based on divergences between single points, our framework can capture the divergence between distributions which improves the quality of learned representation. By combining conventional contrastive loss with the proposed divergence loss, our method outperforms baseline and most of previous methods for self-supervised and semi-supervised learning on multiple classifications and object detection tasks and datasets. The source code of the method and of all the experiments are available at supplementary.
Advanced self-supervised visual representation learning methods rely on the instance discrimination (ID) pretext task. We point out that the ID task has an implicit semantic consistency (SC) assumption, which may not hold in unconstrained datasets. In this paper, we propose a novel contrastive mask prediction (CMP) task for visual representation learning and design a mask contrast (MaskCo) framework to implement the idea. MaskCo contrasts region-level features instead of view-level features, which makes it possible to identify the positive sample without any assumptions. To solve the domain gap between masked and unmasked features, we design a dedicated mask prediction head in MaskCo. This module is shown to be the key to the success of the CMP. We evaluated MaskCo on training datasets beyond ImageNet and compare its performance with MoCo V2. Results show that MaskCo achieves comparable performance with MoCo V2 using ImageNet training dataset, but demonstrates a stronger performance across a range of downstream tasks when COCO or Conceptual Captions are used for training. MaskCo provides a promising alternative to the ID-based methods for self-supervised learning in the wild.
Contrastive learning has achieved great success in self-supervised visual representation learning, but existing approaches mostly ignored spatial information which is often crucial for visual representation. This paper presents heterogeneous contrastive learning (HCL), an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations. We demonstrate the effectiveness of HCL by showing that (i) it achieves higher accuracy in instance discrimination and (ii) it surpasses existing pre-training methods in a series of downstream tasks while shrinking the pre-training costs by half. More importantly, we show that our approach achieves higher efficiency in visual representations, and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
Leveraging temporal information has been regarded as essential for developing video understanding models. However, how to properly incorporate temporal information into the recent successful instance discrimination based contrastive self-supervised learning (CSL) framework remains unclear. As an intuitive solution, we find that directly applying temporal augmentations does not help, or even impair video CSL in general. This counter-intuitive observation motivates us to re-design existing video CSL frameworks, for better integration of temporal knowledge. To this end, we present Temporal-aware Contrastive self-supervised learningTaCo, as a general paradigm to enhance video CSL. Specifically, TaCo selects a set of temporal transformations not only as strong data augmentation but also to constitute extra self-supervision for video understanding. By jointly contrasting instances with enriched temporal transformations and learning these transformations as self-supervised signals, TaCo can significantly enhance unsupervised video representation learning. For instance, TaCo demonstrates consistent improvement in downstream classification tasks over a list of backbones and CSL approaches. Our best model achieves 85.1% (UCF-101) and 51.6% (HMDB-51) top-1 accuracy, which is a 3% and 2.4% relative improvement over the previous state-of-the-art.
We propose a self-supervised approach for learning representations of objects from monocular videos and demonstrate it is particularly useful in situated settings such as robotics. The main contributions of this paper are: 1) a self-supervising objective trained with contrastive learning that can discover and disentangle object attributes from video without using any labels; 2) we leverage object self-supervision for online adaptation: the longer our online model looks at objects in a video, the lower the object identification error, while the offline baseline remains with a large fixed error; 3) to explore the possibilities of a system entirely free of human supervision, we let a robot collect its own data, train on this data with our self-supervise scheme, and then show the robot can point to objects similar to the one presented in front of it, demonstrating generalization of object attributes. An interesting and perhaps surprising finding of this approach is that given a limited set of objects, object correspondences will naturally emerge when using contrastive learning without requiring explicit positive pairs. Videos illustrating online object adaptation and robotic pointing are available at: https://online-objects.github.io/.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا