Do you want to publish a course? Click here

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search

109   0   0.0 ( 0 )
 Added by Houwen Peng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Object tracking has achieved significant progress over the past few years. However, state-of-the-art trackers become increasingly heavy and expensive, which limits their deployments in resource-constrained applications. In this work, we present LightTrack, which uses neural architecture search (NAS) to design more lightweight and efficient object trackers. Comprehensive experiments show that our LightTrack is effective. It can find trackers that achieve superior performance compared to handcrafted SOTA trackers, such as SiamRPN++ and Ocean, while using much fewer model Flops and parameters. Moreover, when deployed on resource-constrained mobile chipsets, the discovered trackers run much faster. For example, on Snapdragon 845 Adreno GPU, LightTrack runs $12times$ faster than Ocean, while using $13times$ fewer parameters and $38times$ fewer Flops. Such improvements might narrow the gap between academic models and industrial deployments in object tracking task. LightTrack is released at https://github.com/researchmm/LightTrack.

rate research

Read More

Non-Local (NL) blocks have been widely studied in various vision tasks. However, it has been rarely explored to embed the NL blocks in mobile neural networks, mainly due to the following challenges: 1) NL blocks generally have heavy computation cost which makes it difficult to be applied in applications where computational resources are limited, and 2) it is an open problem to discover an optimal configuration to embed NL blocks into mobile neural networks. We propose AutoNL to overcome the above two obstacles. Firstly, we propose a Lightweight Non-Local (LightNL) block by squeezing the transformation operations and incorporating compact features. With the novel design choices, the proposed LightNL block is 400x computationally cheaper} than its conventional counterpart without sacrificing the performance. Secondly, by relaxing the structure of the LightNL block to be differentiable during training, we propose an efficient neural architecture search algorithm to learn an optimal configuration of LightNL blocks in an end-to-end manner. Notably, using only 32 GPU hours, the searched AutoNL model achieves 77.7% top-1 accuracy on ImageNet under a typical mobile setting (350M FLOPs), significantly outperforming previous mobile models including MobileNetV2 (+5.7%), FBNet (+2.8%) and MnasNet (+2.1%). Code and models are available at https://github.com/LiYingwei/AutoNL.
211 - Xuanyi Dong , Yi Yang 2019
Neural architecture search (NAS) aims to automate the search procedure of architecture instead of manual design. Even if recent NAS approaches finish the search within days, lengthy training is still required for a specific architecture candidate to get the parameters for its accurate evaluation. Recently one-shot NAS methods are proposed to largely squeeze the tedious training process by sharing parameters across candidates. In this way, the parameters for each candidate can be directly extracted from the shared parameters instead of training them from scratch. However, they have no sense of which candidate will perform better until evaluation so that the candidates to evaluate are randomly sampled and the top-1 candidate is considered the best. In this paper, we propose a Self-Evaluated Template Network (SETN) to improve the quality of the architecture candidates for evaluation so that it is more likely to cover competitive candidates. SETN consists of two components: (1) an evaluator, which learns to indicate the probability of each individual architecture being likely to have a lower validation loss. The candidates for evaluation can thus be selectively sampled according to this evaluator. (2) a template network, which shares parameters among all candidates to amortize the training cost of generated candidates. In experiments, the architecture found by SETN achieves state-of-the-art performance on CIFAR and ImageNet benchmarks within comparable computation costs. Code is publicly available on GitHub: https://github.com/D-X-Y/AutoDL-Projects.
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.
Despite remarkable progress achieved, most neural architecture search (NAS) methods focus on searching for one single accurate and robust architecture. To further build models with better generalization capability and performance, model ensemble is usually adopted and performs better than stand-alone models. Inspired by the merits of model ensemble, we propose to search for multiple diverse models simultaneously as an alternative way to find powerful models. Searching for ensembles is non-trivial and has two key challenges: enlarged search space and potentially more complexity for the searched model. In this paper, we propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges. For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking, considering both the potentiality and diversity of candidate operators. For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes. The experiments on ImageNet clearly demonstrate that our solution can improve the supernets capacity of ranking ensemble architectures, and further lead to better search results. The discovered architectures achieve superior performance compared with state-of-the-arts such as MobileNetV3 and EfficientNet families under aligned settings. Moreover, we evaluate the generalization ability and robustness of our searched architecture on the COCO detection benchmark and achieve a 3.1% improvement on AP compared with MobileNetV3. Codes and models are available at https://github.com/researchmm/NEAS.
Neural Architecture Search (NAS) achieves significant progress in many computer vision tasks. While many methods have been proposed to improve the efficiency of NAS, the search progress is still laborious because training and evaluating plausible architectures over large search space is time-consuming. Assessing network candidates under a proxy (i.e., computationally reduced setting) thus becomes inevitable. In this paper, we observe that most existing proxies exhibit different behaviors in maintaining the rank consistency among network candidates. In particular, some proxies can be more reliable -- the rank of candidates does not differ much comparing their reduced setting performance and final performance. In this paper, we systematically investigate some widely adopted reduction factors and report our observations. Inspired by these observations, we present a reliable proxy and further formulate a hierarchical proxy strategy. The strategy spends more computations on candidate networks that are potentially more accurate, while discards unpromising ones in early stage with a fast proxy. This leads to an economical evolutionary-based NAS (EcoNAS), which achieves an impressive 400x search time reduction in comparison to the evolutionary-based state of the art (8 vs. 3150 GPU days). Some new proxies led by our observations can also be applied to accelerate other NAS methods while still able to discover good candidate networks with performance matching those found by previous proxy strategies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا