Do you want to publish a course? Click here

On the topology of some hyperspaces of convex bodies associated to tensor norms

64   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For every tuple $d_1,dots, d_lgeq 2,$ let $mathbb{R}^{d_1}otimescdotsotimesmathbb{R}^{d_l}$ denote the tensor product of $mathbb{R}^{d_i},$ $i=1,dots,l.$ Let us denote by $mathcal{B}(d)$ the hyperspace of centrally symmetric convex bodies in $mathbb{R}^d,$ $d=d_1cdots d_l,$ endowed with the Hausdorff distance, and by $mathcal{B}_otimes(d_1,dots,d_l)$ the subset of $mathcal{B}(d)$ consisting of the convex bodies that are closed unit balls of reasonable crossnorms on $mathbb{R}^{d_1}otimescdotsotimesmathbb{R}^{d_l}.$ It is known that $mathcal{B}_otimes(d_1,dots,d_l)$ is a closed, contractible and locally compact subset of $mathcal{B}(d).$ The hyperspace $mathcal{B}_otimes(d_1,dots,d_l)$ is called the space of tensorial bodies. In this work we determine the homeomorphism type of $mathcal{B}_otimes(d_1,dots,d_l).$ We show that even if $mathcal{B}_otimes(d_1,dots,d_l)$ is not convex with respect to the Minkowski sum, it is an Absolute Retract homeomorphic to $mathcal{Q}timesmathbb{R}^p,$ where $mathcal{Q}$ is the Hilbert cube and $p=frac{d_1(d_1+1)+cdots+d_l(d_l+1)}{2}.$ Among other results, the relation between the Banach-Mazur compactum and the Banach-Mazur type compactum associated to $mathcal{B}_otimes(d_1,dots,d_l)$ is examined.



rate research

Read More

284 - Maysam Maysami Sadr 2017
We study some topological spaces that can be considered as hyperspaces associated to noncommutative spaces. More precisely, for a NC compact space associated to a unital C*-algebra, we consider the set of closed projections of the second dual of the C*-algebra as the hyperspace of closed subsets of the NC space. We endow this hyperspace with an analog of Vietoris topology. In the case that the NC space has a quantum metric space structure in the sense of Rieffel we study the analogs of Hausdorff and infimum distances on the hyperspace. We also formulate some interesting problems about distances between sub-circles of a quantum torus.
121 - N. Levenberg , F. Wielonsky 2021
Polynomial spaces associated to a convex body $C$ in $({bf R}^+)^d$ have been the object of recent studies. In this work, we consider polynomial spaces associated to non-convex $C$. We develop some basic pluripotential theory including notions of $C-$extremal plurisubharmonic functions $V_{C,K}$ for $Ksubset {bf C}^d$ compact. Using this, we discuss Bernstein-Walsh type polynomial approximation results and asymptotics of random polynomials in this non-convex setting.
Let $K$ be an isotropic symmetric convex body in ${mathbb R}^n$. We show that a subspace $Fin G_{n,n-k}$ of codimension $k=gamma n$, where $gammain (1/sqrt{n},1)$, satisfies $$Kcap Fsubseteq frac{c}{gamma }sqrt{n}L_K (B_2^ncap F)$$ with probability greater than $1-exp (-sqrt{n})$. Using a different method we study the same question for the $L_q$-centroid bodies $Z_q(mu )$ of an isotropic log-concave probability measure $mu $ on ${mathbb R}^n$. For every $1leq qleq n$ and $gammain (0,1)$ we show that a random subspace $Fin G_{n,(1-gamma )n}$ satisfies $Z_q(mu )cap Fsubseteq c_2(gamma )sqrt{q},B_2^ncap F$. We also give bounds on the diameter of random projections of $Z_q(mu )$ and using them we deduce that if $K$ is an isotropic convex body in ${mathbb R}^n$ then for a random subspace $F$ of dimension $(log n)^4$ one has that all directions in $F$ are sub-Gaussian with constant $O(log^2n)$.
Let $K$ and $L$ be two convex bodies in $mathbb R^n$, $ngeq 2$, with $Lsubset text{int}, K$. We say that $L$ is an equichordal body for $K$ if every chord of $K$ tangent to $L$ has length equal to a given fixed value $lambda$. J. Barker and D. Larman proved that if $L$ is a ball, then $K$ is a ball concentric with $L$. In this paper we prove that there exist an infinite number of closed curves, different from circles, which possess an equichordal convex body. If the dimension of the space is more than or equal to 3, then only Euclidean balls possess an equichordal convex body. We also prove some results about isoptic curves and give relations between isoptic curves and convex rotors in the plane.
We present an alternative approach to some results of Koldobsky on measures of sections of symmetric convex bodies, which allows us to extend them to the not necessarily symmetric setting. We prove that if $K$ is a convex body in ${mathbb R}^n$ with $0in {rm int}(K)$ and if $mu $ is a measure on ${mathbb R}^n$ with a locally integrable non-negative density $g$ on ${mathbb R}^n$, then begin{equation*}mu (K)leq left (csqrt{n-k}right )^kmax_{Fin G_{n,n-k}}mu (Kcap F)cdot |K|^{frac{k}{n}}end{equation*} for every $1leq kleq n-1$. Also, if $mu $ is even and log-concave, and if $K$ is a symmetric convex body in ${mathbb R}^n$ and $D$ is a compact subset of ${mathbb R}^n$ such that $mu (Kcap F)leq mu (Dcap F)$ for all $Fin G_{n,n-k}$, then begin{equation*}mu (K)leq left (ckL_{n-k}right )^{k}mu (D),end{equation*} where $L_s$ is the maximal isotropic constant of a convex body in ${mathbb R}^s$. Our method employs a generalized Blaschke-Petkantschin formula and estimates for the dual affine quermassintegrals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا