We compute explicitly the Khovanov polynomials (using the computer program from katlas.org) for the two simplest families of the satellite knots, which are the twisted Whitehead doubles and the two-strand cables. We find that a quantum group decomposition for the HOMFLY polynomial of a satellite knot can be extended to the Khovanov polynomial, whose quantum group properties are not manifest. Namely, the Khovanov polynomial of a twisted Whitehead double or two-strand cable (the two simplest satellite families) can be presented as a naively deformed linear combination of the pattern and companion invariants. For a given companion, the satellite polynomial smoothly depends on the pattern but for the jump at one critical point defined by the s-invariant of the companion knot. A similar phenomenon is known for the knot Floer homology and tau-invariant for the same kind of satellites.