Do you want to publish a course? Click here

Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras

205   0   0.0 ( 0 )
 Added by Jerzy Lukierski
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed $D=4$ quantum inhomegeneous conformal Hopf algebras $mathcal{U}_{theta }(su(2,2)ltimes T^{4}$) and $mathcal{U}_{bar{theta}}(su(2,2)ltimesbar{T}^{4}$), where $T^{4}$ describe complex twistor coordinatesand $bar{T}^{4}$ the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently we introduce the quantum deformations of $D=4$ Heisenberg-conformal algebra (HCA) $su(2,2)ltimes H^{4,4}_hslash$ ($H^{4,4}_hslash=bar{T}^4 ltimes_hslash T_4$ is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length $lambda_p$ will be called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We shall describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and by the quantization map in $H_hslash^{4,4}$. We introduce as well generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra $mathcal{U}_theta(su(2,2)ltimes T^4).$



rate research

Read More

For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We give explicitly, in each case, the list of the corresponding twisted partition functions
Massless conformal scalar field in d=4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2,2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2,2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS_5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS_5 is simply the enveloping algebra of SU(2,2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS_5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS_5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2,2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS_5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in AdS_4 where the 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.
Massless conformal scalar field in six dimensions corresponds to the minimal unitary representation (minrep) of the conformal group SO(6,2). This minrep admits a family of deformations labelled by the spin t of an SU(2)_T group, which is the 6d analog of helicity in four dimensions. These deformations of the minrep of SO(6,2) describe massless conformal fields that are symmetric tensors in the spinorial representation of the 6d Lorentz group. The minrep and its deformations were obtained by quantization of the nonlinear realization of SO(6,2) as a quasiconformal group in arXiv:1005.3580. We give a novel reformulation of the generators of SO(6,2) for these representations as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group SO(5,1) and apply them to define higher spin algebras and superalgebras in AdS_7. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS_7 is simply the enveloping algebra of SO(6,2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS_7. Furthermore, the enveloping algebras of the deformations of the minrep define a discrete infinite family of HS algebras in AdS_7 for which certain 6d Lorentz covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras OSp(8*|2N) and we find a discrete infinite family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a discrete family of (supersymmetric) HS theories in AdS_7 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 6d.
361 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even though the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
We show that the Ocneanu algebra of quantum symmetries, for an ADE diagram (or for higher Coxeter-Dynkin systems, like the Di Francesco - Zuber system) is, in most cases, deduced from the structure of the modular T matrix in the A series. We recover in this way the (known) quantum symmetries of su(2) diagrams and illustrate our method by studying those associated with the three genuine exceptional diagrams of type su(3), namely E5, E9 and E21. This also provides the shortest way to the determination of twisted partition functions in boundary conformal field theory with defect lines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا