No Arabic abstract
In this letter, we investigate the population dynamics in a May-Leonard formulation of the rock-paper-scissors game in which one or two species, which we shall refer to as weak, have a reduced predation or reproduction probability. We show that in a nonspatial model the stationary solution where all three species coexist is always unstable, while in a spatial stochastic model coexistence is possible for a wide parameter space. We find, that a reduced predation probability results in a significantly higher abundance of weak species, in models with either one or two weak species, as long as the simulation lattices are sufficiently large for coexistence to prevail. On the other hand, we show that a reduced reproduction probability has a smaller impact on the abundance of weak species, generally leading to a slight decrease of its population size -- the increase of the population size of one of the weak species being more than compensated by the reduction of the other, in the two species case. We further show that the species abundances in models where both predation and reproduction probabilities are simultaneously reduced may be accurately estimated from the results obtained considering only a reduction of either the predation or the reproduction probability.
We investigate the problem of the predominance and survival of weak species in the context of the simplest generalization of the spatial stochastic rock-paper-scissors model to four species by considering models in which one, two, or three species have a reduced predation probability. We show, using lattice based spatial stochastic simulations with random initial conditions, that if only one of the four species has its probability reduced then the most abundant species is the prey of the weakest (assuming that the simulations are large enough for coexistence to prevail). Also, among the remaining cases, we present examples in which weak and strong species have similar average abundances and others in which either of them dominates -- the most abundant species being always a prey of a weak species with which it maintains a unidirectional predator-prey interaction. However, in contrast to the three-species model, we find no systematic difference in the global performance of weak and strong species, and we conjecture that the same result will hold if the number of species is further increased. We also determine the probability of single species survival and coexistence as a function of the lattice size, discussing its dependence on initial conditions and on the change to the dynamics of the model which results from the extinction of one of the species.
We investigate a modified spatial stochastic Lotka-Volterra formulation of the rock-paper-scissors model using off-lattice stochastic simulations. In this model one of the species moves preferentially in a specific direction -- the level of preference being controlled by a noise strength parameter $eta in [0, 1]$ ($eta = 0$ and $eta = 1$ corresponding to total preference and no preference, respectively) -- while the other two species have no referred direction of motion. We study the behaviour of the system starting from random initial conditions, showing that the species with asymmetric mobility has always an advantage over its predator. We also determine the optimal value of the noise strength parameter which gives the maximum advantage to that species. Finally, we find that the critical number of individuals, below which the probability of extinction becomes significant, decreases as the noise level increases, thus showing that the addition of a preferred mobility direction studied in the present paper does not favour coexistence.
We investigate the impact of parity on the abundance of weak species in the context of the simplest generalization of the rock-paper-scissors model to an arbitrary number of species -- we consider models with a total number of species ($N_S$) between 3 and 12, having one or more (weak) species characterized by a reduced predation probability (by a factor of ${mathcal P}_w$ with respect to the other species). We show, using lattice based spatial stochastic simulations with random initial conditions, large enough for coexistence to prevail, that parity effects are significant. We find that the performance of weak species is dependent on whether the total number of species is even or odd, especially for $N_S le 8$, with odd numbers of species being on average more favourable to weak species than even ones. We further show that, despite the significant dispersion observed among individual models, a weak species has on average a higher abundance than a strong one if ${mathcal P}_w$ is sufficiently smaller than unity -- the notable exception being the four species case.
This work reports on two related investigations of stochastic simulations which are widely used to study biodiversity and other related issues. We first deal with the behavior of the Hamming distance under the increase of the number of species and the size of the lattice, and then investigate how the mobility of the species contributes to jeopardize biodiversity. The investigations are based on the standard rules of reproduction, mobility and predation or competition, which are described by specific rules, guided by generalization of the rock-paper-scissors game, valid in the case of three species. The results on the Hamming distance indicate that it engenders universal behavior, independently of the number of species and the size of the square lattice. The results on the mobility confirm the prediction that it may destroy diversity, if it is increased to higher and higher values.
The spatio-temporal arrangement of interacting populations often influences the maintenance of species diversity and is a subject of intense research. Here, we study the spatio-temporal patterns arising from the cyclic competition between three species in two dimensions. Inspired by recent experiments, we consider a generic metapopulation model comprising rock-paper-scissors interactions via dominance removal and replacement, reproduction, mutations, pair-exchange and hopping of individuals. By combining analytical and numerical methods, we obtain the models phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the spiraling patterns arising in each phase. The phases characterizing the cyclic competition away far from the Hopf bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale expansion around the models Hopf bifurcation. Our results allows us to clarify when spatial rock-paper-scissors competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility.