Do you want to publish a course? Click here

Magnetic order and 5d1 multipoles in a rhenate double perovskite Ba2MgReO6

136   0   0.0 ( 0 )
 Added by Stephen Lovesey
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structural and magnetic transitions in a double perovskite hosting 5d1 Re ions are discussed on the basis of recently published high-resolution x-ray diffraction patterns [D. Hirai, et al., Phys. Rev. Res. 2, 022063(R) (2020)]. A reported structural transition below room temperature, from cubic to tetragonal symmetry, appears not to be driven by T2g-type quadrupoles, as suggested. A magnetic motif at lower temperature is shown to be composed of two order parameters, associated with propagation vectors k = (0, 0, 1) and k = (0, 0, 0). Findings from our studies, for structural and magnetic properties of Ba2MgReO6, surface in predicted amplitudes for x-ray diffraction at rhenium L2 and L3 absorption edges, and magnetic neutron Bragg diffraction. Specifically, entanglement of anapole and spatial degrees of freedom creates a quadrupole in the neutron scattering amplitude. It would be excluded in an unexpected scenario whereby the rhenium atomic state is a manifold. Also, a chiral signature visible in resonant x-ray diffraction will be one consequence of predicted electronic quadrupole and magnetic dipole orders. A model Re wave function consistent with all current knowledge is a guide to electronic and magnetic multipoles engaged in x-ray and neutron diffraction investigations.



rate research

Read More

A recent polarized neutron diffraction experiment on the 5d2 rhenium double perovskite Ba2YReO6 held at a low temperature uncovered weak magnetic diffraction peaks. Data analysis inferred a significantly reduced Re dipole moment, and long-range order compatible with an antiferromagnet, non-collinear motif. To interpret the experimental findings, we present a model wavefunction for Re ions derived from the crystal field potential, Coulomb interaction, and spin-orbit coupling that fully respects the symmetry of the low-temperature ordered state. It is used to calculate in analytic form all multipole moments visible in neutron and resonance enhanced x-ray diffraction. A minimal model consistent with available neutron diffraction data predicts significant multipolar moments up to the hexadecapole, and, in particular, a dominant charge-like quadrupole moment. Calculated diffraction patterns embrace single crystal x-ray diffraction at the Re L-edge, and renewed neutron diffraction, to probe the presumed underlying multipolar order.
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr2ScOsO6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Density functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.
219 - S W Lovesey , D D Khalyavin 2014
A theoretical investigation of a plausible construct for electronic structure in iridate perovskites demonstrates the existence of magnetic multipoles hitherto not identified. The strange multipoles, which are parity-even, time-odd and even rank tensors, are absent from the so-called jeff = 1/2 model. We prove that the strange multipoles contribute to magnetic neutron diffraction, and we estimate their contribution to intensities of Bragg spots for Sr2IrO4. The construct encompasses the jeff = 1/2 model, and it is consistent with the known magnetic structure, ordered magnetic moment, and published resonant x-ray Bragg diffraction data. Over and above time-odd quadrupoles and hexadecapoles, whose contribution changes neutron Bragg intensities by an order of magnitude, according to our estimates, are relatively small triakontadipoles recently proposed as the primary magnetic order-parameter of Sr2IrO4.
Recent theoretical studies [Chen et al., Phys. Rev. B 82, 174440 (2010), Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetry without breaking time reversal symmetry leading to a nematic phase just above magnetic ordering temperature. We present high-resolution calorimetric and magnetization data of the same Ba2NaOsO6 single crystal and show evidence for a weakly field-dependent phase transition occurring at a temperature of Ts ~ 9.5K, above the magnetic ordering temperature of Tc ~ 7.5K. This transition appears as a broadened step in the low-field temperature dependence of the specific heat. The evolution of the phase boundary with applied magnetic field suggests that this phase coincides with the phase of broken local point symmetry seen in high field NMR experiments [Lu et al., Nat. Comm. 8 14407 (2017)]. Furthermore, the magnetic field dependence of the specific heat provides clear indications for magnetic correlations persisting at temperatures between Tc and Ts where long-range magnetic order is absent giving support for the existence of the proposed nematic phase.
Compulsory Dirac multipoles in the bilayer perovskite Ca3Ru2O7 are absent in published analyses of experimental data. In a first step at correcting knowledge of the magnetic structure, we have analysed existing Bragg diffraction patterns gathered on samples held well below the Neel temperature at which A-type antiferromagnetic order of axial dipoles spontaneously develops. Patterns were gathered with neutrons, and linearly polarized x-rays tuned in energy to a ruthenium atomic resonance. Neutron diffraction data contains solid evidence of Dirac dipoles (anapoles or toroidal moments). No such conclusion is reached with existing x-ray diffraction data, which instead is ambiguous on the question. To address this shortcoming by future experiments, we calculated additional diffraction patterns. Chiral order of Dirac multipoles is allowed by magnetic space-group PCna21, and it can be exposed in Bragg diffraction using circularly polarized x-rays. Likewise, a similar experiment can expose a chiral order of axial dipoles. A magnetic field applied parallel to the b-axis creates a ferrimagnetic structure in which bulk magnetization arises from field-induced nonequivalent Ru sites (magnetic space-group Pmc21).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا