Do you want to publish a course? Click here

On Identification of Boolean Control Networks

80   0   0.0 ( 0 )
 Added by June Feng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A new analytical framework consisting of two phenomena: single sample and multiple samples, is proposed to deal with the identification problem of Boolean control networks (BCNs) systematically and comprehensively. Under this framework, the existing works on identification can be categorized as special cases of these two phenomena. Several effective criteria for determining the identifiability and the corresponding identification algorithms are proposed. Three important results are derived: (1) If a BN is observable, it is uniquely identifiable; (2) If a BCN is O1-observable, it is uniquely identifiable, where O1-observability is the most general form of the existing observability terms; (3) A BN or BCN may be identifiable, but not observable. In addition, remarks present some challenging future research and contain a preliminary attempt about how to identify unobservable systems.



rate research

Read More

It has been shown that self-triggered control has the ability to reduce computational loads and deal with the cases with constrained resources by properly setting up the rules for updating the system control when necessary. In this paper, self-triggered stabilization of Boolean control networks (BCNs), including deterministic BCNs, probabilistic BCNs and Markovian switching BCNs, is first investigated via semi-tensor product of matrices and Lyapunov theory of Boolean networks. The self-triggered mechanism with the aim to determine when the controller should be updated is given based on the decrease of the corresponding Lyapunov functions between two successive sampling times. We show that the self-triggered controllers can be chosen as the conventional controllers without sampling, and also can be optimally constructed based on the triggering conditions.
A logical function can be used to characterizing a property of a state of Boolean network (BN), which is considered as an aggregation of states. To illustrate the dynamics of a set of logical functions, which characterize our concerned properties of a BN, the invariant subspace containing the set of logical functions is proposed, and its properties are investigated. Then the invariant subspace of Boolean control network (BCN) is also proposed. The dynamics of invariant subspace of BCN is also invariant. Finally, using outputs as the set of logical functions, the minimum realization of BCN is proposed, which provides a possible solution to overcome the computational complexity of large scale BNs/BCNs.
74 - P. den Boef , P. B. Cox , R. Toth 2021
This paper describes the LPVcore software package for MATLAB developed to model, simulate, estimate and control systems via linear parameter-varying (LPV) input-output (IO), state-space (SS) and linear fractional (LFR) representations. In the LPVcore toolbox, basis affine parameter-varying matrix functions are implemented to enable users to represent LPV systems in a global setting, i.e., for time-varying scheduling trajectories. This is a key difference compared to other software suites that use a grid or only LFR-based representations. The paper contains an overview of functions in the toolbox to simulate and identify IO, SS and LFR representations. Based on various prediction-error minimization methods, a comprehensive example is given on the identification of a DC motor with an unbalanced disc, demonstrating the capabilities of the toolbox. The software and examples are available on www.lpvcore.net.
The linear-quadratic controller is one of the fundamental problems in control theory. The optimal solution is a linear controller that requires access to the state of the entire system at any given time. When considering a network system, this renders the optimal controller a centralized one. The interconnected nature of a network system often demands a distributed controller, where different components of the system are controlled based only on local information. Unlike the classical centralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus, we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs are naturally local and have distributed architectures, making them well suited for learning nonlinear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning problem, we are able to find the best GNN-based distributed controller. We also derive sufficient conditions for the resulting closed-loop system to be stable. We run extensive simulations to study the performance of GNN-based distributed controllers and showcase that they are a computationally efficient parametrization with scalability and transferability capabilities.
Controlling network systems has become a problem of paramount importance. Optimally controlling a network system with linear dynamics and minimizing a quadratic cost is a particular case of the well-studied linear-quadratic problem. When the specific topology of the network system is ignored, the optimal controller is readily available. However, this results in a emph{centralized} controller, facing limitations in terms of implementation and scalability. Finding the optimal emph{distributed} controller, on the other hand, is intractable in the general case. In this paper, we propose the use of graph neural networks (GNNs) to parametrize and design a distributed controller. GNNs exhibit many desirable properties, such as being naturally distributed and scalable. We cast the distributed linear-quadratic problem as a self-supervised learning problem, which is then used to train the GNN-based controllers. We also obtain sufficient conditions for the resulting closed-loop system to be input-state stable, and derive an upper bound on the trajectory deviation when the system is not accurately known. We run extensive simulations to study the performance of GNN-based distributed controllers and show that they are computationally efficient and scalable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا