No Arabic abstract
Motivated by experiments on colloidal membranes composed of chiral rod-like viruses, we use Monte Carlo methods to determine the phase diagram for the liquid crystalline order of the rods and the membrane shape. We generalize the Lebwohl-Lasher model for a nematic with a chiral coupling to a curved surface with edge tension and a resistance to bending, and include an energy cost for tilting of the rods relative to the local membrane normal. The membrane is represented by a triangular mesh of hard beads joined by bonds, where each bead is decorated by a director. The beads can move, the bonds can reconnect and the directors can rotate at each Monte Carlo step. When the cost of tilt is small, the membrane tends to be flat, with the rods only twisting near the edge for low chiral coupling, and remaining parallel to the normal in the interior of the membrane. At high chiral coupling, the rods twist everywhere, forming a cholesteric state. When the cost of tilt is large, the emergence of the cholesteric state at high values of the chiral coupling is accompanied by the bending of the membrane into a saddle shape. Increasing the edge tension tends to flatten the membrane. These results illustrate the geometric frustration arising from the inability of a surface normal to have twist.
We use theory and numerical computation to determine the shape of an axisymmetric fluid membrane with a resistance to bending and constant area. The membrane connects two rings in the classic geometry that produces a catenoidal shape in a soap film. In our problem, we find infinitely many branches of solutions for the shape and external force as functions of the separation of the rings, analogous to the infinite family of eigenmodes for the Euler buckling of a slender rod. Special attention is paid to the catenoid, which emerges as the shape of maximal allowable separation when the area is less than a critical area equal to the planar area enclosed by the two rings. A perturbation theory argument directly relates the tension of catenoidal membranes to the stability of catenoidal soap films in this regime. When the membrane area is larger than the critical area, we find additional cylindrical tether solutions to the shape equations at large ring separation, and that arbitrarily large ring separations are possible. These results apply for the case of vanishing Gaussian curvature modulus; when the Gaussian curvature modulus is nonzero and the area is below the critical area, the force and the membrane tension diverge as the ring separation approaches its maximum value. We also examine the stability of our shapes and analytically show that catenoidal membranes have markedly different stability properties than their soap film counterparts.
We introduce the spatial correlation function $C_Q(r)$ and temporal autocorrelation function $C_Q(t)$ of the local tetrahedral order parameter $Qequiv Q(r,t)$. Using computer simulations of the TIP5P model of water, we investigate $C_Q(r)$ in a broad region of the phase diagram. First we show that $C_Q(r)$ displays anticorrelation at $rapprox 0.32$nm at high temperatures $T>T_Wapprox 250$ K, which changes to positive correlation below the Widom line $T_W$. Further we find that at low temperatures $C_Q(t)$ exhibits a two-step temporal decay similar to the self intermediate scattering function, and that the corresponding correlation time $tau_Q$ displays a dynamic crossover from non-Arrhenius behavior for $T>T_W$ to Arrhenius behavior for $T<T_W$. Finally, we define an orientational entropy $S_Q$ associated with the {it local} orientational order of water molecules, and show that $tau_Q$ can be extracted from $S_Q$ using an analog of the Adam-Gibbs relation.
Motivated by the structure of networks of cross-linked cytoskeletal biopolymers, we study the orientationally ordered phases in two-dimensional networks of randomly cross-linked semiflexible polymers. We consider permanent cross-links which prescribe a finite angle and treat them as quenched disorder in a semi-microscopic replica field theory. Starting from a fluid of un-cross-linked polymers and small polymer clusters (sol) and increasing the cross-link density, a continuous gelation transition occurs. In the resulting gel, the semiflexible chains either display long range orientational order or are frozen in random directions depending on the value of the crossing angle, the crosslink concentration and the stiffness of the polymers. A crossing angle $thetasim 2pi/M$ leads to long range $M$-fold orientational order, e.g., hexatic or tetratic for $theta=60^{circ}$ or $90^{circ}$, respectively. The transition is discontinuous and the critical cross-link density depends on the bending stiffness of the polymers and the cross-link geometry: the higher the stiffness and the lower $M$, the lower the critical number of cross-links. In between the sol and the long range ordered state, we always observe a gel which is a statistically isotropic amorphous solid (SIAS) with random positional and random orientational localization of the participating polymers.
The beautiful structures of single and multi-domain proteins are clearly ordered in some fashion but cannot be readily classified using group theory methods that are successfully used to describe periodic crystals. For this reason, protein structures are considered to be aperiodic, and may have evolved this way for functional purposes, especially in instances that require a combination of softness and rigidity within the same molecule. By analyzing the solved protein structures, we show that orientational symmetry is broken in the aperiodic arrangement of the secondary structural elements (SSEs), which we deduce by calculating the nematic order parameter, $P_{2}$. We find that the folded structures are nematic droplets with a broad distribution of $P_{2}$. We argue that non-zero values of $P_{2}$, leads to an arrangement of the SSEs that can resist mechanical forces, which is a requirement for allosteric proteins. Such proteins, which resist mechanical forces in some regions while being flexible in others, transmit signals from one region of the protein to another (action at a distance) in response to binding of ligands (oxygen, ATP or other small molecules).
We present an x-ray study of freely suspended hexatic films of the liquid crystal 3(10)OBC. Our results reveal spatial inhomogeneities of the bond-orientational (BO) order in the vicinity of the hexatic-smectic phase transition and the formation of large scale hexatic domains at lower temperatures. Deep in the hexatic phase up to 25 successive sixfold BO order parameters have been directly determined by means of angular x-ray cross-correlation analysis (XCCA). Such strongly developed hexatic order allowed us to determine higher order correction terms in the scaling relation predicted by the multicritical scaling theory over a full temperature range of the hexatic phase existence.