Do you want to publish a course? Click here

Transport through interacting defects and lack of thermalisation

71   0   0.0 ( 0 )
 Added by Alvise Bastianello
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider 1D integrable systems supporting ballistic propagation of quasiparticles, perturbed by a localised defect that breaks most conservation laws and induces chaotic dynamics. We study an out-of-equilibrium protocol engineered activating the defect in an initially homogeneous and far from the equilibrium state. We find that large enough defects induce full thermalisation at their center, but nonetheless the outgoing flow of carriers emerging from the defect is non-thermal due to a generalization of the celebrated Boundary Thermal Resistance effect, occurring at the edges of the chaotic region. Our results are obtained combining ab-initio numerical simulations for relatively small-sized defects, with the solution of the Boltzmann equation, which becomes exact in the scaling limit of large, but weak defects.



rate research

Read More

We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functions, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.
We discuss the origin of topological defects in phase transitions and analyze their role as a diagnostic tool in the study of the non-equilibrium dynamics of symmetry breaking. Homogeneous second order phase transitions are the focus of our attention, but the same paradigm is applied to the cross-over and inhomogeneous transitions. The discrepancy between the experimental results in 3He and 4He is discussed in the light of recent numerical studies. The possible role of the Ginzburg regime in determining the vortex line density for the case of a quench in 4He is raised and tentatively dismissed. The difference in the anticipated origin of the dominant signal in the two (3He and 4He) cases is pointed out and the resulting consequences for the subsequent decay of vorticity are noted. The possibility of a significant discrepancy between the effective field theory and (quantum) kinetic theory descriptions of the order parameter is briefly touched upon, using atomic Bose-Einstein condensates as an example.
We calculate in detail the Renyi entanglement entropies of cTPQ states as a function of subsystem volume, filling the details of our prior work [Nature Communications 9, 1635 (2018)], where the formulas were first presented. Working in a limit of large total volume, we find universal formulas for the Renyi entanglement entropies in a region where the subsystem volume is comparable to that of the total system. The formulas are applicable to the infinite temperature limit as well as general interacting systems. For example we find that the second Renyi entropy of cTPQ states in terms of subsystem volume is written universally up to two constants, $S_2(ell)=-ln K(beta)+ellln a(beta)-lnleft(1+a(beta)^{-L+2ell}right)$, where $L$ is the total volume of the system and $a$ and $K$ are two undetermined constants. The uses of the formulas were already presented in our prior work and we mostly concentrate on the theoretical aspect of the formulas themselves. Aside from deriving the formulas for the Renyi Page curves, the expression for the von Neumann Page curve is also derived, which was not presented in our previous work.
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.
Using a Wigner function based approach, we study the Renyi entropy of a subsystem $A$ of a system of Bosons interacting with a local repulsive potential. The full system is assumed to be in thermal equilibrium at a temperature $T$ and density $rho$. For a ${cal U}(N)$ symmetric model, we show that the Renyi entropy of the system in the large $N$ limit can be understood in terms of an effective non-interacting system with a spatially varying mean field potential, which has to be determined self consistently. The Renyi entropy is the sum of two terms: (a) Renyi entropy of this effective system and (b) the difference in thermal free energy between the effective system and the original translation invariant system, scaled by $T$. We determine the self consistent equation for this effective potential within a saddle point approximation. We use this formalism to look at one and two dimensional Bose gases on a lattice. In both cases, the potential profile is that of a square well, taking one value in the subsystem $A$ and a different value outside it. The potential varies in space near the boundary of the subsystem $A$ on the scale of density-density correlation length. The effect of interaction on the entanglement entropy density is determined by the ratio of the potential barrier to the temperature and peaks at an intermediate temperature, while the high and low temperature regimes are dominated by the non-interacting answer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا